Skip to main content
Log in

An epicuticular multilayer reflector generates the iridescent coloration in chrysidid wasps (Hymenoptera, Chrysididae)

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Chrysidid wasps in the subfamily Chrysidinae are brood parasitoids or cleptoparasites of other insects and famous for their cuticular iridescence. In this study, we examine the dorsal abdominal cuticle of the chrysidid wasp Hedychrum rutilans to identify the underlying color mechanism. Using scanning electron microscopy, reflectance spectral analysis, and theoretical calculations, we demonstrate the presence of an epicuticular multilayer reflector consisting of six lamellae with a thickness of 185 nm each. The lamellae exhibit a rough surface probably functioning as spacers between the individual layers. The reflector has a measured reflectance maximum at λ = 630 nm, i.e., in the red part of the visible spectrum of light at normal incidence and the reflectance maximum shifts to green as the angle of incidence increases. Complementary theoretical modeling corroborates the view that the epicuticular multilayer generates the iridescent color of the chrysidid cuticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Biró L, Bálint Z, Kertész K, Vértesy Z, Márk G, Horváth Z, Bálazs J, Méhn D, Kiricsi I, Lousse V, Vigneron JP (2003) Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. Phys Rev E 67:021907

    Article  Google Scholar 

  • Biró L (2007) Living photonic crystals: butterfly scales—nanostructure and optical properties. Mat Sci Eng C-Bio S 27:941–946

    Article  Google Scholar 

  • Brown RM, Turner PE (1985) Spaced armor. US Patent 4529640

  • Frey W (1936) Untersuchungen über die Entstehung der Strukturfarben der Chrysididen nebst Beiträgen zur Kenntnis der Hymenopterencuticula. Zoomorphology 31:443–489

    Google Scholar 

  • Fung K (2005) Photonic iridescence of a blue-banded bee. Microsc Microanal 11(2):1202–1203

    Article  Google Scholar 

  • Kimsey L, Bohart R (1990) The chrysidid wasps of the world. Oxford University Press, New York

    Google Scholar 

  • Kinoshita S, Yoshioka S, Kawagoe K (2002) Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc R Soc Lond B 269:1417–1421

    Article  Google Scholar 

  • Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:076401

    Article  Google Scholar 

  • Kurachi M, Takaku Y, Komiya Y, Hariyama T (2002) The origin of extensive colour polymorphism in Plateumaris sericea (Chrysomelidae, Coleoptera). Naturwissenschaften 89:295–298

    Article  PubMed  CAS  Google Scholar 

  • Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75–106

    Article  PubMed  CAS  Google Scholar 

  • Larouche S, Martinu L (2008) OpenFilters: open-source software for the design, optimization, and synthesis of optical filters. Appl Optics 47:219–230

    Article  Google Scholar 

  • Macleod HA (2001) Thin-film optical filters. Institute of Physics, Bristol

    Google Scholar 

  • Noyes JA, Vukusic P, Hooper IR (2007) Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle. Opt Express 15:4351–4358

    Article  PubMed  CAS  Google Scholar 

  • Parker A, Welch V, Driver D, Martini N (2003) Opal analogue discovered in a weevil. Nature 426:786–787

    Article  PubMed  CAS  Google Scholar 

  • Parker AR (2000) 515 million years of structural colour. J Opt A Pure Appl Opt 2:R15–R28

    Article  Google Scholar 

  • Sarrazin M, Vigneron JP, Welch V, Rassart M (2008) Nanomorphology of the blue iridescent wings of a giant tropical wasp, Megascolia procer javanensis (Hymenoptera). Phys Rev E 78:051902

    Article  Google Scholar 

  • Schultz TD, Rankin MA (1985) The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cincidela). J Exp Biol 117:87–110

    Google Scholar 

  • Seago AE, Brady P, Vigneron JP, Schultz TD (2009) Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 6:S165–S184

    PubMed  Google Scholar 

  • Strohm E, Kroiss J, Herzner G, Laurien-Kehnen C, Boland W, Schreier P, Schmitt T (2008) A cuckoo in wolves’ clothing? Chemical mimicry in a specialized cuckoo wasp of the European beewolf (Hymenoptera, Chrysididae and Crabronidae). Front Zool 5:2

    Article  PubMed  Google Scholar 

  • Strohm E, Laurien-Kehnen C, Bordon S (2001) Escape from parasitism: spatial and temporal strategies of a sphecid wasp against a specialised cuckoo wasp. Oecologia 129:50–57

    Article  Google Scholar 

  • Vigneron JP et al (2006) Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material. Phys Rev E 73:041905

    Article  Google Scholar 

  • Wallace AR (1879) Protective mimicry in animals. In: Brown R (ed) Science for all, vol 2. Cassell, Petter, Galpin and Co, London, pp 284–296

    Google Scholar 

  • Welch V, Lousse V, Deparis O, Parker AR, Vigneron JP (2007) Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae). Phys Rev E 75:041919

    Article  Google Scholar 

  • Welch VL, Vigneron JP (2007) Beyond butterflies—the diversity of biological photonic crystals. Opt Quant Electron 39:295–303

    Article  CAS  Google Scholar 

  • Welch VL, Vigneron JP, Parker AR (2005) The cause of colouration in the ctenophore Beroe cucumis. Curr Biol 15:R985–R986

    Article  PubMed  CAS  Google Scholar 

  • Zi J, Yu X, Li Y, Hu X, Xu C, Wang X, Liu X, Fu R (2003) Coloration strategies in peacock feathers. Proc Natl Acad Sci U S A 100:12576–12578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was partly supported by the EU through FP6 BIOPHOT NEST/Pathfinder 012915 project and by a grant of the German Science Foundation, DFG, Bonn (STR 532/1-2). The authors acknowledge the use of Namur Interuniversity Scientific Computing Facility Namur-ISCF, a common project between the Belgian FNRS and the University of Namur, Belgium. C. Vandenbem is a postdoctoral researcher of the FRS-FNRS. The authors thank Victoria Welch for helpful discussions and Wolfgang Göttler for his help with preliminary SEM investigations. The experiments carried out in this research comply with the current laws in Germany and Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Kroiss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Dorsal view of the abdomen of H. rutilans (Hymenoptera, Chrysididae), parasitoid of the European beewolf Philanthus triangulum (Hymenoptera, Crabronidae). The strongly iridescent coloration is red at perpendicular view and turns green and blue under larger incidence (JPEG 896 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroiss, J., Strohm, E., Vandenbem, C. et al. An epicuticular multilayer reflector generates the iridescent coloration in chrysidid wasps (Hymenoptera, Chrysididae). Naturwissenschaften 96, 983–986 (2009). https://doi.org/10.1007/s00114-009-0553-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0553-6

Keywords

Navigation