Skip to main content
Log in

Keeping the blood flowing—plasminogen activator genes and feeding behavior in vampire bats

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The blood feeding vampire bats emerged from New World leaf-nosed bats that fed on fruit and insects. Plasminogen activator, a serine protease that regulates blood coagulation, is known to be expressed in the saliva of Desmodus rotundus (common vampire bat) and is thought to be a key enzyme for the emergence of blood feeding in vampire bats. To better understand the evolution of this biological function, we studied the plasminogen activator (PA) genes from all vampire bat species in light of their feeding transition to bird and subsequently mammalian blood. We include the rare species Diphylla ecaudata and Diaemus youngi, where plasminogen activator had not previously been studied and demonstrate that PA gene duplication observed in Desmodus is not essential to the vampire phenotype, but relates to the emergence of predominant mammalian blood feeding in this species. Plasminogen activator has evolved through gene duplication, domain loss, and sequence evolution leading to change in fibrin-specificity and susceptibility to plasminogen activator inhibitor-1. Before undertaking this study, only the four plasminogen activator isoforms from Desmodus were known. The evolution of vampire bat plasminogen activators can now be linked phylogenetically to the transition in feeding behavior among vampire bat species from bird to mammalian blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Basanova AV, Baskova IP, Zavalova LL (2002) Vascular-platelet and plasma hemostasis regulators from bloodsucking animals. Biochemistry-Moscow 67:143–150

    Article  PubMed  CAS  Google Scholar 

  • Bennett WF, Paoni NF, Keyt BA, Botstein D, Jones AJ, Presta L, Wurm FM, Zoller MJ (1991) High resolution analysis of functional determinants on human tissue-type plasminogen activator. J Biol Chem 266:5191–5201

    PubMed  CAS  Google Scholar 

  • Bode W, Renatus M (1997) Tissue-type plasminogen activator: variants and crystal/solution structures demarcate structural determinants of function. Curr Opin Struct Biol 7:865–872

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Schoonjans L, Kleckans L, Ream B, Degen J, Bronson R, De Vos R, van den Oord JJ, Collen D, Mulligan RC (1994) Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368:419–424

    Article  PubMed  CAS  Google Scholar 

  • Dellas C, Loskutoff DJ (2005) Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb Haemost 93:631–640

    PubMed  CAS  Google Scholar 

  • Dong N, Da Cunha V, Citkowicz A, Wu F, Vincelette J, Larsen B, Wang YX, Ruan C, Dole WP, Morser J, Wu Q, Pan J (2004) P-selectin-targeting of the fibrin selective thrombolytic Desmodus rotundus salivary plasminogen activator alpha1. Thromb Haemost 92:956–965

    PubMed  CAS  Google Scholar 

  • Frank MB (1997) In: Frank MB (ed) Molecular biology protocols. (Oklahoma City, http://omrf.ouhsc.edu/~frank)

  • Gardell SJ, Duong LT, Diehl RE, York JD, Hare TR, Register RB, Jacobs JW, Dixon RA, Friedman PA (1989) Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem 264:17947–17952

    PubMed  CAS  Google Scholar 

  • Greenhall AM, Schutt WA (1996) Diaemus youngi. Mamm Species 533:1–7

    Article  Google Scholar 

  • Greenhall AM, Joermann R, Schmidt U, Seidel M (1983) Desmodus rotundus. Mamm Species 202:1–6

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hawkey C (1966) Plasminogen activator in saliva of the vampire bat Desmodus rotundus. Nature 211:434–435

    Article  PubMed  CAS  Google Scholar 

  • Hoyt RA, Altenbach JS (1981) Observations on Diphylla ecaudata in captivity. J Mammol 62:215–216

    Article  Google Scholar 

  • Hughes T, Liberles DA (2007) The pattern of evolution of smaller scale gene duplicates in mammalian genomes is more consistent with neo- than sub-functionalisation. J Mol Evol 65:574–588

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Sakata Y, Matsuda Y, Mimuro J (1992) Interactions between the finger and kringle-2 domains of tissue-type plasminogen activator and plasminogen activator inhibitor-1. J Biochem 111:244–248

    PubMed  CAS  Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed  CAS  Google Scholar 

  • Kratzschmar J, Haendler B, Langer G, Boidol W, Bringmann P, Alagon A, Donner P, Schleuning WD (1991) The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundus: cloning and expression. Gene 105:229–237

    Article  PubMed  CAS  Google Scholar 

  • Liberatore GT, Samson A, Bladin CF, Schleuning WD, Medcalf RL (2003) Vampire bat salivary plasminogen activator (Desmoteplase). A unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke 34:537–543

    Article  PubMed  CAS  Google Scholar 

  • Liberles DA (2001) Evaluation of methods for determination of a reconstructed history of gene sequence evolution. Mol Biol Evol 18:2040–2047

    PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2003) The evolutionary demography of duplicate genes. J Struct Func Genomics 3:35–44

    Article  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Renatus M, Stubbs MT, Huber R, Bringmann P, Donner P, Schleuning WD, Bode W (1997) Catalytic domain structure of vampire bat plasminogen activator: a molecular paradigm for proteolysis without activation cleavage. Biochemistry 36:13483–13493

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Roth C, Rastogi S, Arvestad L, Dittmar K, Light S, Ekman D, Liberles DA (2007) Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J Exp Zool 308B:58–73

    Article  CAS  Google Scholar 

  • Sazima I, Uieda W (1980) Feeding behavior of the white-winged vampire bat, Diaemus youngii, on poultry. J Mammol 61:102–104

    Article  Google Scholar 

  • Schleuning WD, Alagon A, Boidol W, Bringmann P, Petri T, Kratzshcmar J, Haendler B, Langer G, Baldus B, Witt W, Donner P (1992) Plasminogen activators from the saliva of Desmodus rotundus (Common Vampire Bat): unique fibrin specificity. Annals NY Acad Sci 667:395–403

    Article  CAS  Google Scholar 

  • Schutt WA, Altenbach JS, Chang YH, Cullinane DM, Hermanson JW, Muradali F, Bertram JEA (1997) The dynamics of flight-initiating jumps in the common vampire bat Desmodus rotundus. J Exp Biol 200:3003–3012

    PubMed  Google Scholar 

  • Stewart RJ, Fredenburgh JC, Weitz JI (1998) Characterization of the interactions of plasminogen and tissue and vampire bat plasminogen activators with fibrinogen, fibrin, and the complex of D-dimer noncovalently linked to fragment E. J Biol Chem 273:18292–18299

    Article  PubMed  CAS  Google Scholar 

  • Thelwell C, Longstaff C (2007) The regulation by fibrinogen and fibrin of tissue plasminogen activator kinetics and inhibition by plasminogen activator inhibitor 1. J Thromb Haemost 5:804–811

    Article  PubMed  CAS  Google Scholar 

  • Trajano E (1996) Movements of cave bats in southeastern Brazil, with emphasis on the population ecology of the common vampire bats, Desmodus rotundus (Chiroptera). Biotropica 18:121–129

    Article  Google Scholar 

  • Wetterer JK, Rockman MV, Simmons NB (2000) Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems, sex chromosomes, and restriction sites. Bull Am Mus Nat Hist 248:1–200

    Article  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Don Jarvis and Christoph Geisler for materials, equipment, and technical assistance. Samples of Carollia perspicillata, Diphylla ecaudata, Desmodus rotundus, and Diaemus youngi were provided by: Uwe Schmidt at University of Bonn, Germany, The Field Museum (Bruce Patterson), Daniel Abrams at Rancho Transylvania, New Mexico, K. Harada at Osaka City University, and Texas Tech University Museum in addition to samples collected by the authors of this paper. Funding for this work has been provided by an INBRE (NIH) grant to University of Wyoming, the Carl Trygger Foundation, and FUGE. The experiments performed comply with the current laws of the United States, Norway, and Sweden, where this research was performed. Sequences were submitted to Genbank, with Carollia sequences under accession bankit1121506, Diphylla sequences under accession bankit1121509, and Diaemus sequences under accession bankit1121511.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Liberles.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplmentary Figure 1 (S1)

Phylogenetic tree including alleles (DOC 55.0 KB)

Supplementary Figure 2 (S2)

Alignment with alleles (DOC 52.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tellgren-Roth, Å., Dittmar, K., Massey, S.E. et al. Keeping the blood flowing—plasminogen activator genes and feeding behavior in vampire bats. Naturwissenschaften 96, 39–47 (2009). https://doi.org/10.1007/s00114-008-0446-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0446-0

Keywords

Navigation