Skip to main content

Advertisement

Log in

Emergence of long distance bird migrations: a new model integrating global climate changes

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

During modern birds history, climatic and environmental conditions have evolved on wide scales. In a continuously changing world, landbirds annual migrations emerged and developed. However, models accounting for the origins of these avian migrations were formulated with static ecogeographic perspectives. Here I reviewed Cenozoic paleoclimatic and paleontological data relative to the palearctic–paleotropical long distance (LD) migration system. This led to propose a new model for the origin of LD migrations, the ‘shifting home’ model (SHM). It is based on a dynamic perspective of climate evolution and may apply to the origins of most modern migrations. Non-migrant tropical African bird taxa were present at European latitudes during most of the Cenozoic. Their distribution limits shifted progressively toward modern tropical latitudes during periods of global cooling and increasing seasonality. In parallel, decreasing winter temperatures in the western Palearctic drove shifts of population winter ranges toward the equator. I propose that this induced the emergence of most short distance migrations, and in turn LD migrations. This model reconciliates ecologically tropical ancestry of most LD migrants with predominant winter range shifts, in accordance with requirements for heritable homing. In addition, it is more parsimonious than other non-exclusive models. Greater intrinsic plasticity of winter ranges implied by the SHM is supported by recently observed impacts of the present global warming on migrating birds. This may induce particular threats to some LD migrants. The ancestral, breeding homes of LD migrants were not ‘northern’ or ‘southern’ but shifted across high and middle latitudes while migrations emerged through winter range shifts themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Able KP, Belthoff JR (1998) Rapid ‘evolution’ of migratory behaviour in the introduced House Finch of eastern North America. Proc R Soc London B 265:2063–2071

    Article  Google Scholar 

  • Axelrod DI (1983) Paleobotanical history of the western deserts. In: Wells SG, Haragan DR (eds) Origin and evolution of deserts. Univ New Mexico Press, Albuquerque, pp 113–129

    Google Scholar 

  • Bell CP (2000) Process in the evolution of bird migration and pattern in avian ecogeography. J Avian Biol 31:258–265

    Article  Google Scholar 

  • Bell CP (2005) The origin and development of bird migration: comments on Rappole and Jones, and an alternative evolutionary model. Ardea 93:115–123

    Google Scholar 

  • Berthold P (1993) Bird migration, a general survey. Oxford Univ Press, Oxford

    Google Scholar 

  • Berthold P (1999) A comprehensive theory for the evolution, control and adaptability of avian migration. Ostrich 70:1–11

    Google Scholar 

  • Blondel J, Mourer-Chauviré C (1998) Evolution and history of the western palearctic avifauna. Trends Ecol Evol 13:488–492

    Article  Google Scholar 

  • Böhning-Gaese K, Oberrath R (2003) Macroecology of habitat choice in long-distance migratory birds. Oecologia 137:296–303

    Article  PubMed  Google Scholar 

  • Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312:1477–1478

    Article  PubMed  CAS  Google Scholar 

  • Bruderer B, Salewski V, Liechti F (2008) Gedanken zur Evolution des Vogelzuges. Ornithol Beob 105:165–167

    Google Scholar 

  • Cheneval J (1989) Fossil bird study, and paleoecological and paleoenvironmental consequences: example from the Saint-Gérand-le-Puy deposits (Lower Miocene, Allier, France). Palaeogeogr Palaeoclim Palaeoecol 73:295–309

    Article  Google Scholar 

  • Cox GW (1968) The role of competition in the evolution of migration. Evolution 22:180–192

    Article  Google Scholar 

  • Cox GW (1985) The evolution of avian migration systems between temperate and tropical regions of the New World. Am Nat 126:451–474

    Article  Google Scholar 

  • Fedorov AV, Dekens PS, McCarthy M, Ravelo AC, de Menocal PB, Barreiro M, Pacanowski RC, Philander SG (2006) The Pliocene paradox (mechanisms for a permanent El Niño). Science 312:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Feduccia A (1996) The origin and evolution of birds. Yale Univ Press, New Haven

    Google Scholar 

  • Gauthreaux S (1982) The ecology and evolution of avian migration systems. In: Farner DS, King JR, Parkes KC (eds) Avian biology. Academic, New York, pp 93–168

    Google Scholar 

  • Graham A (1999) Studies in neotropical paleobotany. XIII. An Oligo-Miocene palynoflora from Simojovel (Chiapas, Mexico). Am J Botany 86:17–31

    Article  Google Scholar 

  • Greenberg R (1980) Demographic aspects of long-distance migration. In: Keast A, Morton ES (eds) Migrant birds in the Neotropics. Smithson Instit, Washington, DC, pp 493–504

    Google Scholar 

  • Guo Z, Peng S, Hao Q, Biscaye PE, An Z, Liu T (2004) Late miocene-pliocene development of asian aridification as recorded in the Red-Earth formation in northern China. Global Planet Change 41:135–145

    Article  Google Scholar 

  • Haarhoff PJ (1993) Latest Pliocene mousebirds (Aves, Coliidae) from Olduvai Gorge, Tanzania. Ann S Afr Mus 103:191–211

    Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Jaramillo CA, Soeller SA (2006) Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. J Biogeogr 33:770–780

    Article  Google Scholar 

  • Helbig AJ (2003) Evolution of migration: a phylogenetic and biogeographic perspective. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Heidelberg, pp 3–20

    Google Scholar 

  • Helm B, Gwinner E (2006) Migratory restlessness in an equatorial nonmigratory bird. PLoS Biology 4:611–614

    Article  CAS  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2001a) Climate change 2001: impacts, adaptation and vulnerability. Cambridge Univ Press, Cambridge, USA

    Google Scholar 

  • IPCC (2001b) Climate change 2001: the scientific basis. Cambridge Univ Press, Cambridge, USA

    Google Scholar 

  • Jahn AE, Levey DJ, Smith KG (2004) Reflections across hemispheres: a system-wide approach to New World bird migration. Auk 121:1005–1013

    Article  Google Scholar 

  • Johnson MD, Sherry TW, Strong AM, Medori A (2005) Migrants in neotropical bird communities: an assessment of the breeding currency hypothesis. J Animal Ecol 74:333–341

    Article  Google Scholar 

  • Joseph L, Lessa EP, Christidis L (1999) Phylogeny and biogeography in the evolution of migration: shorebirds of the Charadrius complex. J Biogeogr 26:329–342

    Article  Google Scholar 

  • Joseph L, Wilke T, Alpers D (2003) Independent evolution of migration on the South American landscape in a long-distance temperate-tropical migratory bird, Swainson’s Flycatcher (Myiarchus swainsoni). J Biogeogr 30:925–937

    Article  Google Scholar 

  • Lihoreau F, Boisserie JR, Viriot L, Coppens Y, Likius A, Mackaye HT, Tafforeau P, Vignaud P, Brunet M (2006) Anthracothere dental anatomy reveals a late Miocene Chado-Libyan bioprovince. Proc Natl Acad Sci U S A 103:8763–8767

    Article  PubMed  CAS  Google Scholar 

  • Lovette IJ (2005) Glacial cycles and the tempo of avian speciation. Trends Ecol Evol 20:57–59

    Article  PubMed  Google Scholar 

  • Matthiesen DG (1990) Avian medullary bone in the fossil record, an example from the Early Pleistocene of Olduvai Gorge, Tanzania. J Vert Paleontol 9:34A

    Google Scholar 

  • Mayr G (2005) The Paleogene fossil record of birds in Europe. Biol Rev 80:515–542

    Article  PubMed  Google Scholar 

  • Mayr E, Meise W (1930) Theoretisches zur Geschichte des Vogelzuges. Vogelzug 1:149–172

    Google Scholar 

  • Mila B, Smith TB, Wayne RK (2006) Postglacial population expansion drives the evolution of long-distance migration in a songbird. Evolution 60:2403–2409

    PubMed  Google Scholar 

  • Mlíkovský J (2002) Cenozoic birds of the world, Part 1: Europe. Ninox, Praha

    Google Scholar 

  • Møller AP (2001) Heritability of arrival date in a migratory bird. Proc R Soc London B 268:203–206

    Article  Google Scholar 

  • Mosbrugger V, Utescher T, Dilcher DL (2005) Cenozoic continental climatic evolution of central Europe. Proc Natl Acad Sci U S A 102:14964–14969

    Article  PubMed  CAS  Google Scholar 

  • Mourer-Chauviré C (2004) Review: cenozoic birds of the world, part 1: Europe. Auk 121:623–627

    Article  Google Scholar 

  • Nilsson ALK, Alerstam T, Nilsson JA (2006) Do partial and regular migrants differ in their responses to weather? Auk 123:537–547

    Article  Google Scholar 

  • Olson SL (1985) The fossil record of birds. In: Farner DS, King JR, Parkes KC (eds) Avian biology. Academic, New York, pp 79–238

    Google Scholar 

  • Olson SL (1989) Aspects of global avifaunal dynamics during the Cenozoic. In: Ouellet H (ed) Acta XIX congressus internationalis ornithologici. Univ Ottawa Press, Ottawa, pp 2023–2029

    Google Scholar 

  • Olson SL, Rasmussen PC (2001) Miocene and pliocene birds from the Lee Creek mine, North Carolina. Smithson Contrib Paleobiol 90:233–345

    Google Scholar 

  • Outlaw DC, Voelker G (2006) Phylogenetic tests of hypotheses for the evolution of avian migration: a case study using the Motacillidae. Auk 123:455–466

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Price TD, Helbig AJ, Richman AD (1997) Evolution of breeding distributions in the Old World leaf warblers (genus Phylloscopus). Evolution 51:552–561

    Article  Google Scholar 

  • Pulido F, Berthold P, van Noordwijk AJ (1996) Frequency of migrants and migratory activity are genetically correlated in a bird population: evolutionary implications. Proc Natl Acad Sci U S A 93:14642–14647

    Article  PubMed  CAS  Google Scholar 

  • Rappole JH (1995) Ecology of migrant birds: a neotropical perspective. Smithson Instit, Washington, DC

    Google Scholar 

  • Rappole JH (2005) Evolution of old and New World migration systems: a response to Bell. Ardea 93:125–131

    Google Scholar 

  • Rappole JH, Tipton AR (1992) The evolution of avian migration in the Neotropics. Ornitol Neotrop 3:45–55

    Google Scholar 

  • Rappole JH, Jones P (2002) Evolution of old and New World migration systems. Ardea 90:525–537

    Google Scholar 

  • Rappole JH, Helm B, Ramos MA (2003) An integrative framework for understanding the origin and evolution of avian migration. J Avian Biol 34:124–128

    Article  Google Scholar 

  • Rick AM (1975) Bird medullary bone: a seasonal dating technique for faunal analysts. Bull Can Arch Assoc 7:183–190

    Google Scholar 

  • Riddle BR, Hafner DJ (2006) A step-wise approach to integrating phylogeographic and phylogenetic biogeographic perspectives on the history of a core North American warm deserts biota. J Arid Envir 66:435–461

    Article  Google Scholar 

  • Robinson RA, Learmonth JA, Hutson AM, Macleod CD, Sparks TH, Leech DI, Pierce GJ, Rehfish MM, Crick HQP (2005) Climate change and migratory species. BTO Research Report 414:1–304

    Google Scholar 

  • Root T (1988) Environmental factors associated with avian distributional boundaries. J Biogeogr 15:489–505

    Article  Google Scholar 

  • Ruegg KC, Hijmans RJ, Moritz C (2006) Climate change and the origin of migratory pathways in the Swainson‘s Thrush, Catharus ustulatus. J Biogeogr 33:1172–1182

    Article  Google Scholar 

  • Safriel UN (1995) The evolution of palearctic migration—the case for southern ancestry. Israel J Zool 41:417–431

    Google Scholar 

  • Salewski V, Bruderer B (2007) The evolution of bird migration—a synthesis. Naturwissenschaften 94:268–279

    Article  PubMed  CAS  Google Scholar 

  • Schuster M, Duringer P, Ghienne JF, Vignaud P, Mackaye HT, Likius A, Brunet M (2006) The age of the Sahara Desert. Science 311:821

    Article  PubMed  CAS  Google Scholar 

  • Simkiss K (1967) Calcium in reproductive physiology: a comparative study of vertebrates. Chapman and Hall, London

    Google Scholar 

  • Terrill SB, Ohmart RD (1984) Facultative extension of fall migration by Yellow-rumped Warblers (Dendroica coronata). Auk 101:427–438

    Google Scholar 

  • Terrill SB, Able KP (1988) Bird migration terminology. Auk 105:205–206

    Google Scholar 

  • Tyrberg T (1998) Pleistocene birds of the Palearctic: a catalogue. The Nuttall Ornithological Club, Cambridge, USA

    Google Scholar 

  • Tyrberg T (2007) Pleistocene Birds of the Palearctic http://web.telia.com/~u11502098/pleistocene.html, cached copy at http://www.webcitation.org/5NzvVu5Ib [online, 10 April 2007]

  • Valiela I, Bowen JL (2003) Shifts in winter distributions in birds: effects of global warming and local habitat change. Ambio 32:476–480

    Article  PubMed  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644

    Article  PubMed  Google Scholar 

  • Williams TC, Webb T III (1996) Neotropical bird migration during the Ice Ages: orientation and ecology. Auk 113:105–118

    Google Scholar 

  • Zachos JC, Flower BP, Paul H (1997) Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature 388:567–570

    Article  CAS  Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  PubMed  CAS  Google Scholar 

  • Zink RM (2002) Towards a framework for understanding the evolution of avian migration. J Avian Biol 33:433–436

    Article  Google Scholar 

Download references

Acknowledgements

I thank all members of the Mission Paléoanthropologique Franco-Tchadienne (MPFT), and the NSF-funded Revealing Hominid Origins Initiative (RHOI), for support. I am also most grateful to J.-R. Boisserie, M. Brunet, P. Vignaud and T. D. White, as well as J. Carrier, S. Mailliot and C. Mourer-Chauviré for support, help and discussions, and to V. Salewski and two other referees for comments which improved the manuscript. Finally, I am grateful to the late F. C. Howell who communicated to me in September 2002 the notes of D. G. Matthiesen about Olduvai birds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Louchart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Earliest fossil occurrences in the western Palearctic of modern bird families that comprise today both non-migrating species or populations and LD temperate-tropical migrating species or populations (519 kb).

Table S2

Low atmosphere paleoclimatic data (WMM, CMM, MAP) for different periods and localities spanning different latitudes of northern, central and western Europe and Africa north of the equator in the Cenozoic (589 kb).

Table S3

Latitudinal interval of the average position of the three selected limits of tropical climatic conditions through the Cenozoic in Europe and Africa north of the equator (270 KB).

Figure S4

Constraining envelopes for the latitudinal Cenozoic evolution of the limits of tropical conditions of MAP (a), WMM (b) and CMM (c) derived from the data in the Table S3, and approximate respective trends (94 kb)

High resolution image file (EPS 1.68 mb)

Figure S5

Cenozoic trends for the latitude of limits of humid tropical MAP, WMM and CMM in Europe and the northern part of Africa. Derived from Fig. S4 (53.1 kb).

High resolution image file (EPS 1.19 mb)

Table S6

Synthesis of fossil occurrences in the Cenozoic of Europe and Africa north of the equator, of taxa (orders to genera) that comprise only non-migrant species restricted to the Paleotropical province, the Old World tropics, or the Pantropical area in Africa, i.e. non migrants in the tropics or subtropics of sub-Saharan Africa (822 kb).

Table S7

Recent shifts observed in breeding and wintering ranges of migrating birds in Europe (and some in northern America) linked at least in part to the global climate warming (517 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louchart, A. Emergence of long distance bird migrations: a new model integrating global climate changes. Naturwissenschaften 95, 1109–1119 (2008). https://doi.org/10.1007/s00114-008-0435-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0435-3

Keywords

Navigation