Skip to main content

Advertisement

Log in

Decompression syndrome and the evolution of deep diving physiology in the Cetacea

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early “experiments” in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barnes LG (2006) A phylogenetic analysis of the superfamily Platanistoidea (Mammalia, Cetacea, Odontoceti). Beitr Palaont 30:25–42

    Google Scholar 

  • Beatty BL (2004) Evidence for suction feeding in the Desmostylidae (Desmostylia, Mammalia). J Morph 260(3):276–277, (ICVM-7 abstracts)

    Google Scholar 

  • Beatty BL (2007) Dental microwear as an indicator of substrate and suspended sediment interaction towards a finer view of marine mammal paleoecology. J Vertebr Paleontol 27(Supplement to 3):45A

    Google Scholar 

  • Berta A, Sumich JL (1999) Marine mammals evolutionary biology. Academic, New York

    Google Scholar 

  • Bouetel V (2005) Phylogenetic implications of skull structure and feeding behavior in Balaenopterids (Cetacea, Mysticeti). J Mammal 86(1):139–146

    Article  Google Scholar 

  • Bouetel V Muizon C (2006) The anatomy and relationships of Piscobalaena nana (Cetacea, Mysticeti), a Cetotheriidae s.s. from the early Pliocene of Peru. Geodiversitas 28(2):319–395

    Google Scholar 

  • Croll DA, Acevedo-Gutierrez A et al (2001) The diving behavior of blue and fin whales: is dive duration shorter than expected based on oxygen stores? Comp Biochem Physiol Part A Mol Integr Physiol 129:797–809

    Article  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Dooley AC Jr., Fraser NC et al (2004) The earliest known member of the rorqual-gray whale clade (Mammalia, Cetacea). J Vertebr Paleontol 24(2):453–463

    Article  Google Scholar 

  • Elsner R (1999) Living in water; solutions to physiological problems. In: Reynolds JE, Rommel SA (ed) Biology of marine mammals. Smithsonian Institution Press, Washington, DC, pp 73–116

    Google Scholar 

  • Fernández A, Edwards JF et al (2005) “Gas and fat embolic syndrome” involving a mass stranding of beaked whales (family Ziphiidae) exposed to anthropogenic sonar signals. Vet Pathol 42:446–457

    Article  PubMed  Google Scholar 

  • Fitzgerald EMG (2004) A review of tertiary fossil Cetacea (Mammalia) localities in Australia. Mem Natl Mus Vic 61(2):183–208

    Google Scholar 

  • Fitzgerald EMG (2005) Bizarre baleen whales from Australia’s Ancient Seas. Australas Sci 26(5):23–27

    Google Scholar 

  • Fordyce RE (1980) Whale evolution and Oligocene Southern Ocean environments. Palaeogeogr Palaeoclimatol Palaeoecol 31:319–336

    Article  Google Scholar 

  • Fordyce RE (1992) Cetacean evolution and Eocene/Oligocene environments. In: Prothero DR, Berggren WA (eds) Eocene–Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 368–381

    Google Scholar 

  • Fordyce RE (2003) Cetacean evolution and Eocene–Oligocene oceans revisited. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: the marine Eocene–Oligocene transition. Columbia University Press, New York, pp 154–170

    Google Scholar 

  • Fordyce RE, Muizon (2001) Evolutionary history of cetaceans: a review. In: Mazin J-M, Buffrenil (eds) Secondary adaptation of Tetrapods to life in water. Verlag Dr. Friedrich Pfeil, Munchen, pp 169–233

    Google Scholar 

  • Gaskin DE (1982) The ecology of whales and dolphins. Heineman, London

    Google Scholar 

  • Geisler JH, Sanders AE (2003) Morphological evidence for the phylogeny of Cetacea. J Mammal Evol 10(1/2):23–129

    Article  Google Scholar 

  • Hamilton PK, Stone GS et al (1997) Note on a deep humpback whale Megaptera novaeangliae dive near Bermuda. Bull Mar Sci 61(2):491–494

    Google Scholar 

  • Harvey EN, McElroy WD et al (1944) Bubble formation in animals. III. An analysis of gas tension and hydrostatic pressure in cats. J Cell Comp Physiol 24(2):117–132

    Article  CAS  Google Scholar 

  • Hooker SK, Baird RW (1999) Deep-diving behaviour of the Northern bottlenose whale, Hyperoodon ampullatus (Cetacea: Ziphiidae). Proc R Soc B 266(1420):671–676

    Article  Google Scholar 

  • Hooker SK, Miller PJO et al (2005) Ascent exhalations of Antarctic fur seals: a behavioural adaptation for breath-hold diving? Proc R Soc B 272:355–363

    Article  PubMed  Google Scholar 

  • Houser DS, Howard R et al (2001) Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals? J Theor Biol 213:183–195

    Article  PubMed  CAS  Google Scholar 

  • Hutter CD (2000) Dysbaric osteonecrosis: a reassessment and hypothesis. Med Hypotheses 54(4):585–590

    Article  PubMed  CAS  Google Scholar 

  • Irving L (1935) The protection of whales from danger of Caisson disease. Science 81(2110):560–561

    Article  PubMed  Google Scholar 

  • Jepson PD, Arbelo M et al (2003) Gas-bubble lesions in stranded cetaceans. Nature 425(6958):575–576

    Article  PubMed  CAS  Google Scholar 

  • Jepson PD, Deaville R et al (2005) Acute and chronic gas bubble lesions in cetaceans stranded in the United Kingdom. Vet Pathol 42(3):291–305

    Article  PubMed  CAS  Google Scholar 

  • Jones JP, Neuman TS (2003) Dysbaric osteonecrosis. In:Brubakk AO, Neuman TS (eds) Bennett and Elliott’s physiology and medicine of diving. Saunders, Edinburgh, pp. 659–679

  • Kellogg R (1923) Description of an apparently new toothed cetacean from South Carolina. Smithson Misc Collect 76(7):1–7

    Google Scholar 

  • Kimura T, Ozawa T (2002) A new Cetothere (Cetacea: Mysticeti) from the Early Miocene of Japan. J Vertebr Paleontol 22(3):684–702

    Article  Google Scholar 

  • Kimura T, Okumura Y et al (2000a) An Early Miocene cetothere from the Iwamura Group, Gifu Prefecture, Japan, and its feeding mechanism. Bulletin of the Mizunami Fossil Museum 27:1–12

    Google Scholar 

  • Kimura T, Sakamoto O et al (2000b) A Middle Miocene cetothere from the Chichibumachi Group, central Japan. Bulletin of the Saitama Museum of Natural History 18:15–29

    CAS  Google Scholar 

  • Lagerquist BA, Stafford KM et al (2000) Dive characteristics of satellite-monitored blue whales (Balaenoptera musculus) off the central California coast. Mar Mammal Sci 16:375–391

    Article  Google Scholar 

  • Laidre KL, Heide-Jørgensen MP et al (2007) Role of the bowhead whale as a predator in West Greenland. Mar Ecol Progr Ser 346:285–297

    Article  Google Scholar 

  • Lindberg DR, Pyenson ND (2007) Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the tertiary. Lethaia 40(4):335–343

    Article  Google Scholar 

  • Moore MJ, Early GA (2004) Cumulative sperm whale bone damage and the bends. Science 306(5705):225

    Article  Google Scholar 

  • Motani R, Rothschild BM (1999) Large eyeballs in diving ichthyosaurs. Nature 402:747

    Article  CAS  Google Scholar 

  • Murie J (1872) On the form and structure of the manatee (Manatus americanus). Trans Zool Soc Lond 8(3):127–202

    Google Scholar 

  • Oliver JS, Slattery PN et al (1984) Gray whale feeding on dense ampeliscid amphipod communities near Bamfield British Columbia. Can J Zool 62:41–49

    Article  Google Scholar 

  • Pabst DA, Rommel SA et al (1999) The functional morphology of marine mammals. In: Reynolds JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, Washington, DC, pp 15–72

    Google Scholar 

  • Panigada S, Zanardelli M et al (1999) How deep can baleen whales dive? Mar Ecol Progr Ser 187:309–311

    Article  Google Scholar 

  • Rommel SA, Caplan H (2003) Vascular adaptations for heat conservation in the tail of Florida manatees (Trichechus manatus latirostris). J Anat 202:343–353s

    PubMed  Google Scholar 

  • Rommel SA, Costidis AM et al (2006) Elements of beaked whale anatomy and diving physiology and some hypothetical causes of sonar-related stranding. J Cetacean Res Manag 7(3):189–209

    Google Scholar 

  • Rothschild BM (1982) Rheumatology: a primary care approach. Yorke Medical Press, New York

  • Rothschild BM (1987) Decompression syndrome in fossil marine turtles. Ann Carnegie Mus 56:253–258

    Google Scholar 

  • Rothschild BM (2005) What causes lesions in sperm whale bones? Science 308:631

    Article  PubMed  CAS  Google Scholar 

  • Rothschild BM, Martin LD (1987) Avascular necrosis: occurrence in diving Cretaceous mosasaurs. Science 236:75–77

    Article  PubMed  Google Scholar 

  • Rothschild BM, Martin LD (1993) Paleopathology: disease in the fossil record. CRC, London

    Google Scholar 

  • Rothschild BM, Martin LD (2006) Skeletal impact of disease. N M Mus Nat Hist Sci Bull 33:226

    Google Scholar 

  • Schreer JF, Kovacs KM (1997) Allometry of diving capacity in air-breathing vertebrates. Can J Zool 75:339–358

    Article  Google Scholar 

  • Thewissen JGM, Madar SI et al (1996) Ambulocetus natans, an Eocene cetacean (Mammalia) form Pakistan. Courier Forschungsinstitut Senckenberg 191:1–86

    Google Scholar 

  • Tyack PL, Johnson M et al (2006) Extreme diving of beaked whales. J Exp Biol 209(21):4238–4253

    Article  PubMed  Google Scholar 

  • Uhen MD (1998) Middle to Late Eocene Basilosaurines and Dorudontines. In: Thewissen JGM (ed) The emergence of whales. Plenum, New York, pp 29–61

    Google Scholar 

  • Vogl AW, Fisher HD (1981) Arterial circulation of the spinal cord and brain in the monodontidae (Order cetacea). J Morphol 170(2):171–180

    Article  PubMed  CAS  Google Scholar 

  • Werth AJ, Beatty BL et al (2007) Do odontocetes masticate? Investigating evidence from tooth wear, homodonty and enamel microstructure. J Vertebr Paleontol 27(Supplement to 3):165A

    Google Scholar 

  • Zimmer WMX, Tyack PL (2007) Repetitive shallow dives pose decompression risk in deep-diving beaked whales. Mar Mammal Sci 23(4):888–925

    Article  Google Scholar 

Download references

Acknowledgments

We thank the following people for assistance and access to specimens in their care: A. Sanders (CHM), M. Franc (FLMNH), S. MacLeod and L. Barnes (LACM), J. G. M. Thewissen (NEOUCOM), R. Purdy and D. Bohaska (NMNH), P. Gingerich and Greg Gunnell (Univ Michigan), and P. Holroyd (UCMP). We would like to thank L. D. Martin (KUNHM) for discussion during the preparation of this manuscript. Lastly, we would like to thank two anonymous reviewers for their insightful comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Lee Beatty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beatty, B.L., Rothschild, B.M. Decompression syndrome and the evolution of deep diving physiology in the Cetacea. Naturwissenschaften 95, 793–801 (2008). https://doi.org/10.1007/s00114-008-0385-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0385-9

Keywords

Navigation