Skip to main content
Log in

Biodiversity below ground: probing the subterranean ant fauna of Amazonia

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Ants are abundant, diverse, and ecologically dominant in tropical forests. Subterranean ants in particular are thought to have a significant environmental impact, although difficulties associated with collecting ants underground and examining their ecology and behavior have limited research. In this paper, we present the results of a study of subterranean ant diversity in Amazonian Ecuador that employs a novel probe to facilitate the discovery of species inhabiting the soil horizon. Forty-seven species of ants in 19 genera, including new and apparently rare species, were collected in probes. Approximately 19% of the species collected at different depths in the soil were unique to probe samples. Analysis of similarity (ANOSIM) results showed that the species composition of ants collected with the probe was significantly different from samples collected using other techniques. Additionally, ANOSIM computations indicated the species assemblage of ants collected 12.5 cm below the surface was significantly different from those found at 25, 37.5, and 50 cm. Ant diversity and species accumulation rates decreased with increasing depth. There were no species unique to the lowest depths, suggesting that subterranean ants may not be distributed deep in the soil in Amazonia due to the high water table. The technique we describe could be used to gain new insights into the distribution and biology of subterranean ant species and other members of the species-rich soil invertebrate macrofauna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agosti D, Majer J, Alonso L, Schultz T (eds) (2000) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution, Washington, DC, p 280

    Google Scholar 

  • Berghoff SM, Maschwitz U, Linsenmair KE (2003a) Hypogaeic and epigaeic ant diversity on Borneo: evaluation of baited sieve buckets as a study method. Trop Zool (Florence) 16:153–163

    Google Scholar 

  • Berghoff SM, Maschwitz U, Linsenmair KE (2003b) Influence of the hypogaeic army ant Dorylus (Dichthadia) laevigatus on tropical arthropod communities. Oecologia 135:49–57

    Google Scholar 

  • Bolton B, Alpert G, Ward P, Naskrecki P (2006) Bolton’s catalogue of ants of the world 1758–2005. Harvard University Press, Cambridge

    Google Scholar 

  • Boswell GP, Britton NF, Franks NR (1998) Habitat fragmentation, percolation theory and the conservation of a keystone species. Proc R Soc Lond Ser B Biol Sci 265:1921–1925

    Article  Google Scholar 

  • Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci USA 103:18172–18177

    Article  PubMed  CAS  Google Scholar 

  • Brown BV, Feener DH Jr (1998) Parasitic phorid Flies (Diptera:Phoridae) associated with army ants (Hymenoptera: Formicidae: Ecitoninae, Dorylinae) and their conservation biology. Biotropica 30:482–487

    Article  Google Scholar 

  • Brühl CA, Gunsalam G, Linsenmair KE (1998) Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. J Trop Ecol 14:285–297

    Article  Google Scholar 

  • Chao A, Shen TJ (2003) Program SPADE (species prediction and diversity estimation). Program and user’s guide published at http://chao.stat.nthu.edu.tw

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. User’s guide and application published at: http://purl.oclc.org/estimates

  • Delabie JHC, Fowler HG (1995) Soil and litter cryptic ant assemblages of Bahian cocoa plantations. Pedobiologia 39:423–433

    Google Scholar 

  • Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell D, Higashi M (ed) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, pp 25–54

    Google Scholar 

  • Erwin TL (1989) Canopy arthropod biodiversity: a chronology of sampling techniques and results. Rev Peru Entomol 32:71–77

    Google Scholar 

  • Fisher BL, Robertson HG (2002) Comparison and origin of forest and grassland ant assemblages in the high plateau of Madagascar (Hymenoptera: Formicidae). Biotropica 34:155–167

    Google Scholar 

  • Floren A, Biun A, Linsenmair KE (2002) Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131:137–144

    Article  Google Scholar 

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244

    Article  Google Scholar 

  • Fowler HG, Delabie JHC, Moutinho PRS (2000) Hypogaeic and epigaeic ant (Hymenoptera: Formicidae) assemblages of Atlantic coastal rainforest and dry mature and secondary Amazon forest in Brazil: continuums or communities. Trop Ecol 41:73–80

    Google Scholar 

  • Gotwald WH Jr (1995) Army ants: the biology of social predation. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4(1):9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Kaspari M, O’Donnell S (2003) High rates of army ant raids in the neotropics and implications for ant colony and community structure. Evol Ecol Res 5:933–939

    Google Scholar 

  • Kaspari M, Alonso L, O’Donnell S (2000a) Three energy variables predict ant abundance at a geographical scale. Proc R Soc Lond Ser B Biol Sci 267:485–489

    Article  CAS  Google Scholar 

  • Kaspari M, O’Donnell S, Kercher JR (2000b) Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. Am Nat 155:280–293

    Article  PubMed  Google Scholar 

  • Krebs CJ (1989) Ecological methodology. Harper & Row, New York, NY

    Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lindsey PA, Skinner JD (2001) Ant composition and activity patterns as determined by pitfall trapping and other methods in three habitats in the semi-arid Karoo. J Arid Environ 48:551–568

    Article  Google Scholar 

  • Longino JT, Colwell RK (1997) Biodiversity assessment using structured inventory: capturing the ant fauna of a tropical rain forest. Ecol Appl 7:1263–1277

    Article  Google Scholar 

  • MacKay WP, Vinson SB (1989) A versatile bait trap for sampling ant populations. Notes Underg 3:14

    Google Scholar 

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell S, Kaspari M, Lattke J (2005) Extraordinary predation by the neotropical army ant Cheliomyrmex andicola: implications for the evolution of the army ant syndrome. Biotropica 37:706–709

    Article  Google Scholar 

  • Vasconcelos HL, Vilhena JMS (2006) Species turnover and vertical partitioning of ant assemblages in the Brazilian Amazon: a comparison of forests and savannas. Biotropica 38:100–106

    Article  Google Scholar 

  • Weissflog A, Sternheim E, Dorow WHO, Berghoff S, Maschwitz U (2000) How to study subterranean army ants: a novel method for locating and monitoring field populations of the South East Asian army ant Dorylus (Dichthadia) laevigatus Smith, 1857 (Formicidae, Dorylinae) with observations on their ecology. Insectes Soc 47:317–324

    Article  Google Scholar 

  • Williams DJ (1998) Mealybugs of the genera Eumyrmococcus silvestri and Xenococcus silvestri associated with the ant genus Acropyga Roger and a review of the subfamily Rhizoecinae (Hemiptera, Coccoidea, Pseudococcidae). Bull Br Mus Nat Hist Entomol Ser 67(1):1–64

    Google Scholar 

  • Wilson EO, Holldobler B (2005) The rise of the ants: a phylogenetic and ecological explanation. Proc Natl Acad Sci USA 102:7411–7414

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Hasegawa M (1996) An experiment on ant predation in soil using a new bait trap method. Ecol Res 11:11–16 (Erratum published in Ecological Research 12:109)

    Article  Google Scholar 

  • Yanoviak SP, Kaspari M (2000) Community structure and the habitat templet: ants in tropical forest canopy and litter. Oikos 89:259–266

    Article  Google Scholar 

Download references

Acknowledgement

We thank the directors and staff of Tiputini Biodiversity Station; Dr. Gary Alpert for his insights; Brian Henry, Noah Reid, and Scott Appleby for assistance in the field; David Donoso, Pablo Araujo, Paulina Rosero, Van Le, Helen Mary Sheridan, and Winston McDonald for laboratory assistance; Dr. Terry Erwin for kindly providing canopy fogging samples; Dr. John Longino for identifying Wasmannia and Crematogaster specimens; and Stefan Cover for identifying Solenopsis specimens, as well as providing valuable assistance with ant taxonomy and access to the MCZ ant room. Samples were collected and transported under permit number 16-IC-FAU-RSO-MA issued to Kari Ryder and number 017-IC-FA-PNY-MA issued to Amy Mertl by the Ecuadorian Ministry of the Environment. The experiments comply with the current laws of the US and Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari T. Ryder Wilkie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryder Wilkie, K.T., Mertl, A.L. & Traniello, J.F.A. Biodiversity below ground: probing the subterranean ant fauna of Amazonia. Naturwissenschaften 94, 725–731 (2007). https://doi.org/10.1007/s00114-007-0250-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0250-2

Keywords

Navigation