Skip to main content
Log in

Mastrus ridibundus parasitoids eavesdrop on cocoon-spinning codling moth, Cydia pomonella, larvae

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Cocoon-spinning larvae of the codling moth, Cydia pomonella L. (Lepidoptera: Olethreutidae) employ a pheromone that attracts or arrests conspecifics seeking pupation sites. Such intraspecific communication signals are important cues for illicit receivers such as parasitoids to exploit. We tested the hypothesis that the prepupal C. pomonella parasitoid Mastrus ridibundus Gravenhorst (Hymenoptera: Ichneumonidae) exploits the larval aggregation pheromone to locate host prepupae. In laboratory olfactometer experiments, female M. ridibundus were attracted to 3-day-old cocoons containing C. pomonella larvae or prepupae. Older cocoons containing C. pomonella pupae, or larvae and prepupae excised from cocoons, were not attractive. In gas chromatographic-electroantennographic detection (GC-EAD) analyses of bioactive Porapak Q extract of cocoon-derived airborne semiochemicals, ten compounds elicited responses from female M. ridibundus antennae. Comparative GC-mass spectrometry of authentic standards and cocoon-volatiles determined that these compounds were 3-carene, myrcene, heptanal, octanal, nonanal, decanal, (E)-2-octenal, (E)-2-nonenal, sulcatone, and geranylacetone. A synthetic 11-component blend consisting of these ten EAD-active compounds plus EAD-inactive (+)-limonene (the most abundant cocoon-derived volatile) was as effective as Porapak Q cocoon extract in attracting both female M. ridibundus and C. pomonella larvae seeking pupation sites. Only three components could be deleted from the 11-component blend without diminishing its attractiveness to M. ridibundus, which underlines the complexity of information received and processed during foraging for hosts. Mastrus ridibundus obviously “eavesdrop” on the pheromonal communication signals of C. pomonella larvae that reliably indicate host presence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. An organism is attracted over long range if the distance to the stimulus exceeds a few body lengths of the organism. Mastrus ridibundus (<1 cm in body length) were attracted to test stimuli positioned >25 cm away.

References

  • Bekkaoui A, Thibout E (1993) Role of the cocoon of Acrolepiopsis assectella (Lep., Hyponomeutidae) in host recognition by the parasitoid Diadromus pulchellus (Hym., Ichneumonidae). Entomophaga 38:101–113

    Google Scholar 

  • Bezemer TM, Mills NJ (2001) Host density responses of Mastrus ridibundus, a parasitoid of the codling moth, Cydia pomonella. Biol Control 22:169–175

    Article  Google Scholar 

  • DeLury NC, Gries R, Gries G, Judd GJR, Khaskin G (1999) Moth scales-derived kairomones used by egg-larval parasitoid Ascogaster quadridentata to locate eggs of its host, Cydia pomonella. J Chem Ecol 25:2419–2431

    Article  CAS  Google Scholar 

  • Duthie B, Gries G, Gries R, Krupke C, Derksen S (2003) Does pheromone based aggregation of codling moth larvae help procure future mates? J Chem Ecol 29:425–436

    Article  CAS  PubMed  Google Scholar 

  • Geervliet JBF, Ariëns S, Dicke M, Vet LEM (1998) Long-distance assessment of patch profitability through volatile infochemicals by the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae). Biol Control 11:113–121

    Article  Google Scholar 

  • Gries R, Khaskin G, Gries G, Bennett RG, King GGS, Morewood P, Slessor K, Morewood WD (2002) (Z,Z)-4,7-Tridecadien-(S)-2-yl acetate: sex pheromone of Douglas-fir cone gall midge. J Chem Ecol 28:2283–2297

    Article  CAS  PubMed  Google Scholar 

  • Haynes KF, Yeargan KV (1999) Exploitation of intraspecific communication systems: illicit signalers and receivers. Ann Entomol Soc Am 92:960–970

    Google Scholar 

  • Hoffmeister TS, Roitberg BD (1997) To mark the host or the patch: decisions of a parasitoid searching for concealed host larvae. Evol Ecol 11:145–168

    Google Scholar 

  • Hoffmeister TS, Roitberg BD, Lalonde RG (2000) Catching Ariadne by her thread: how a parasitoid exploits the herbivore’s marking trails to locate its host. Entomol Exp Appl 95:77–85

    Google Scholar 

  • Kennedy JS (1974) Changes in the patterning of behavioural sequences. In: Brown LB (ed) Experimental analysis of behaviour. Springer, Berlin Heidelberg New York, pp 1–6

  • Kuhlmann U, Mills NJ (1999) Exploring the biodiversity of Central Asia to assess specialized parasitoids for biological control of apple pests in Europe and North America. Integrated plant protection in orchards. IOBC WPRS Bull 22:1–6

    Google Scholar 

  • Stowe MK, Turlings TCJ, Loughrin JH, Lewis WJ, Tumlinson JH (1995) The chemistry of eavesdropping, alarm, and deceit. Proc Natl Acad Sci USA 92:23–28

    CAS  PubMed  Google Scholar 

  • Unruh TR (1997) From Russia with love: new predators and parasites for control of tree fruit insect pests. Proceedings of the 93rd Annual Meeting of the Washington State Horticultural Association, pp 42–49

    Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Wertheim B, Vet LEM, Dicke M (2003) Increased risk of parasitism as ecological costs of using aggregation pheromones: laboratory and field study of Drosophila-Leptopilina interaction. Oikos 100:269–282

    Google Scholar 

  • Weseloh RM (1981) Host location by parasitoids. In: Nordlund DA, Jones RL, Lewis WJ (eds) Semiochemicals: their role in pest control. Academic, London, pp 79–95

  • Wiskerke JSC, Dicke M, Vet LEM (1993) Larval parasitoid uses aggregation pheromone of adult hosts in foraging behavior: a solution to the reliability-detectability problem. Oecologia 93:145–148

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River, N.J.

Download references

Acknowledgements

Z.J. thanks Thelma Finlayson for a Finlayson Fellowship, and T.U. thanks the Washington Tree Fruit Research Commission for grants supporting parasitoid introduction. We also thank C. Lowenberger, M. Mackauer, P. Landolt, B. Roitberg, and G.J.R. Judd for review of the manuscript. The research was further supported by a grant from NSERC to G.G. Insects were maintained in SFU’s Global Forest Quarantine Facility (GF-18–2000-SFU-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Gries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jumean, Z., Unruh, T., Gries, R. et al. Mastrus ridibundus parasitoids eavesdrop on cocoon-spinning codling moth, Cydia pomonella, larvae. Naturwissenschaften 92, 20–25 (2005). https://doi.org/10.1007/s00114-004-0581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-004-0581-1

Keywords

Navigation