Skip to main content
Log in

Molecular biodiversity. Case study: Porifera (sponges)

  • Review Article
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Biological diversity—or biodiversity—is the term given to the variety of life on Earth and the natural patterns it forms. The biodiversity we see today is the fruit of billions of years of evolution, shaped by natural processes and, increasingly, by the influence of humans. It forms the web of life of which we are an integral part and upon which we so fully depend. The research on molecular biodiversity tries to lay the scientific foundation of a rational conservation policy that has its roots in various disciplines including systematics/taxonomy (species richness), present day ecology (diversity of ecological systems), and functional genetics (genetic diversity). The results of ongoing genome analyses (genome projects and expressed sequence tag projects) and the achievements of molecular evolution may allow us not only to quantitate the diversity of the present biota but also to extrapolate to their diversification in the future. A link between biodiversity and genomics/molecular evolution will create a platform which we hope may facilitate a sustainable management of organismic life and ensure its exploitation for human benefit. In the present review we outline possible strategies, using the Porifera (sponges) as a prominent example. On the basis of solid taxonomy and ecological data, the high value of this phylum for human application becomes obvious, especially with regard to the field of chemical ecology and the desire to find novel potential drugs for clinical use. In addition, the benefit of trying to make sense of molecular biodiversity using sponges as an example can be seen in the fact that the study of these animals, which are "living fossils", gives us a good insight into the history of our planet, especially with respect to the evolution of Metazoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–G.
Fig. 3A–B.
Fig. 4.
Fig. 5.
Fig. 6A–B.
Fig. 7.
Fig. 8A–B.
Fig. 9A–B.

Similar content being viewed by others

References

  • Arndt W (1937) Schwämme. Gebr. Bornträger, Berlin

  • Bartmann-Lindholm C, Geisert M, Güngerich U, Müller WEG, Weinblum D (1997) Nuclear DNA fractions with grossly different base ratios in the genome of the marine sponge Geodia cydonium. J Colloid Polym Sci 107:122–126

    CAS  Google Scholar 

  • Bavestrello G, Bonito M, Sarà M (1993) Silica content and spicular size variation during an annual cycle in Chondrilla nucula Schmidt (Porifera, Demospongiae) in the Ligurian Sea. Sci Mar 57:421–425

    Google Scholar 

  • Bengtson S (1998) Animal embryos in deep time. Nature 391:529–530

    Article  CAS  Google Scholar 

  • Bergmann W, Feeney RJ (1951) Contribution to the study of marine sponges. 32. The nucleosides of sponges. J Org Chem 16:981–987

    CAS  Google Scholar 

  • Bergquist PR, Walsh D, Gray RD (1998) Relationship within and between the order of Demospongiae that lack a mineral skeleton. In: Watanabe Y, Fusetani N (eds) Sponge science: multidisciplinary perspectives. Springer, Tokyo, pp 31–40

    Google Scholar 

  • Beug HJ (1977) Vegetationsgeschichtliche Untersuchungen im Küstenbereich von Istrien (Jugoslawien). Flora 166:357–381

    Google Scholar 

  • Bisby FA (1995) Characterization of biodiversity. In: Heywood VH, Watson RT (eds) Global biodiversity assessment. Cambridge University Press, Cambridge, pp 21–106

  • Böhm M, Hentschel U, Friedrich AB, Fieseler L, Steffen R, Gamulin V, Müller IM, Muller WEG (2001) Molecular response of the sponge Suberites domuncula to bacterial infection. Mar Biol 139:1037–1045

    Article  Google Scholar 

  • Borchiellini C, Boury-Esnault N, Vacelet J, Le Parco Y (1998) Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of metazoa and specific phylogenetic relationships between animals and fungi. Mol Biol Evol 15:647–655

    Google Scholar 

  • Bowen BW (1999) Preserving genes, species, or ecosystems? Healing the fractured foundations of conservation policy. Mol Ecol 8:S5–S10

    Article  CAS  PubMed  Google Scholar 

  • Breter HJ, Grebenjuk VA, Skorokhod A, Müller WEG (2003) Approaches for a sustainable use of the bioactive potential in sponges: analysis of gene clusters, differential display of mRNA and DNA chips. Mar Mol Biotechnol (in press)

    Google Scholar 

  • Buffon GLL (1799) Histoire naturelle de Buffon. Paris

  • Camus M (1783) Histoire des animaux d' Aristote. Desaint, Paris

  • Canfield DE, Teske A (1998) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–132

    Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    CAS  PubMed  Google Scholar 

  • Cimino G, Ghiselin MT (2001) Marine natural products chemistry as an evolutionary narrative. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, pp 115–154

  • Darwin C (1875) The origin of species by means of natural selection; 6th edn. Murray, London

  • De Vries H (1901) Die Mutationstheorie. Veit and Comp, Leipzig

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

  • Donati V (1753) Auszug seiner Natur-Geschichte des Adriatischen Meers. CP Franckens, Halle

  • Ebel R, Brenzinger M, Kunze A, Gross H, Proksch P (1997) Wound activation of prototoxins in the marine sponge Aplysina aerophoba. J Chem Ecol 23:1451–1462

    CAS  Google Scholar 

  • Faulkner DJ (1995) Marine natural products. Nat Prod Rep 13:259–302

    Google Scholar 

  • Gamulin V, Skorokhod A, Kavsan V, Müller IM, Müller WEG (1997) Experimental indication against blockwise evolution of metazoan protein molecules: example, receptor tyrosine kinase gene from the sponge Geodia cydonium. J Mol Evol 44:242–252

    CAS  PubMed  Google Scholar 

  • Gamulin V, Müller IM, Müller WEG (2000) Sponge proteins are more similar to those of Homo sapiens than to Caenorhabditis elegans. Biol J Linn Soc 71:821–828

    Article  Google Scholar 

  • Garnier-Géré P, Naciri-Graven Y, Bougrier S, Magoulas A, Héral M, Kotoulas G, Hawkins A, Gérard A (2002) Influence of triploidy, parentage and genetic diversity on growth of the pacific oyster Crassostrea gigas reared in contrasting natural environments. Mol Ecol 11:1499–1514

    Article  PubMed  Google Scholar 

  • Gatti S (2002) High antarctic carbon and silicon cycling: how much do sponges contribute? Boll Mus Ist Biol Univ Genova 66–67(2000–2001):76

  • Grebenjuk VA, Kuusksalu A, Kelve M, Schütze J, Schröder HC, Müller WEG (2002) Induction of (2′-5′)oligoadenylate synthetase in the marine sponges Suberites domuncula and Geodia cydonium by the bacterial endotoxin lipopolysaccharide. Eur J Biochem 269:382–1392

    Google Scholar 

  • Groombridge B (ed) (1992) Global biodiversity: status of the Earth's living resources. World Conservation Monitoring Centre, Chapman and Hall, London

    Google Scholar 

  • Groombridge B, Jenkins MD (eds) (2000) Global biodiversity: Earth's living resources in the 21st century. World Conservation Monitoring Centre, World Conservation Press, Cambridge, UK

    Google Scholar 

  • Haeckel E (1906) Prinzipien der Generellen Morphologie der Organismen. Reimer, Berlin

  • Harvey A (2000) Strategies for discovering drugs from previously unexplored natural products. Drugs Discovery Today 5:294–300

    Article  Google Scholar 

  • Heywood VH, Baste I (1995) Introduction to biodiversity. In: Heywood VH, Watson RT (eds) Global biodiversity assessment. Cambridge University Press, Cambridge, pp 1–19

  • Hirabayashi J, Kasai K (1993) The family of metazoan metal-independent β-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304

    CAS  PubMed  Google Scholar 

  • Hooper JNA, Soest RWM van (2002) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Hubby JL, Lewontin RC (1966) A molecular approach to the study of genetic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54:577–594

    CAS  PubMed  Google Scholar 

  • James NP, Gravestock DI (1990) Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia. Sedimentology 37:455–480

    Google Scholar 

  • Jenkins M, Jakubowska J, Gaillard V, Groombridge B (2002) Living planet index. In: Loh J (ed) Living planet report 2002. World Wide Fund for Nature, Gland, Switzerland

  • Jussieu AL de (1789) Genera plantarum. Herissant, Paris

  • Kaufman AJ, Knoll AH, Narbonne GM (1997) Isotopes, ice ages, and terminal Proterozoic earth history. Proc Natl Acad Sci USA 94:6600–6605

    Article  CAS  PubMed  Google Scholar 

  • Kemp S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. Bull Inst Ocean Monaco 13:61–117

    Google Scholar 

  • Khosla C, Gokhale R.S, Jacobsen JR, Cane DE (1994) Tolerance and specificity of polyketide synthetases. Annu Rev Biochem 68:219–253

    Article  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

  • Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi J, Ishibashi M (1993) Bioactive metabolites from symbiotic marine microorganisms. Chem Rev 93:1753–1769

    CAS  Google Scholar 

  • Koziol C, Kobayashi N, Müller IM, Müller WEG (1998) Cloning of sponge heat shock proteins: evolutionary relationships between the major kingdoms. J Zool Syst Evol Res 36:101–109

    Google Scholar 

  • Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    Article  CAS  PubMed  Google Scholar 

  • Krasko A, Schröder HC, Batel R, Grebenjuk VA, Steffen R, Müller IM, Müller WEG(2002) Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 21:67–80

    Article  CAS  PubMed  Google Scholar 

  • Kreuter MH, Robitzki A, Chang S, Steffen R, Michaelis M, Kljajic Z, Bachmann M, Schröder HC, Müller WEG (1992) Production of the cytostatic agent, aeroplysinin by the sponge Verongia aerophoba in in vitro culture. Comp Biochem Physiol 101C:183–187

    CAS  Google Scholar 

  • Kruse M, Müller IM, Müller WEG (1997) Early evolution of Metazoan serine/threonine- and tyrosine kinases: identification of selected kinases in marine sponges. Mol Biol Evol 14:1326–1334

    CAS  PubMed  Google Scholar 

  • Kruse M, Leys SP, Müller IM, Müller WEG (1998) Phylogenetic position of Hexactinellida within the phylum Porifera based on amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728

    CAS  PubMed  Google Scholar 

  • Lawton JH, May RH (1995) Extinction rates. Oxford University Press, Oxford

  • Linné C (1788) Systema naturae. GE Beer, Lipsiae

  • Lipps JH, Signor PW (1992) Origin and early evolution of Metazoa. Plenum, New York

  • Lyell C (1832) Principles of geology. Murray, London

  • Mayer E (1942) Systematics and the origin of species. Columbia University Press, New York

  • McClintock JB, Baker BJ (2001) Marine chemical ecology. CRC, Boca Raton

  • Mehl D (1992) Die Entwicklung der Hexactinellida seit dem Mesozoikum; Paläobiologie, Phylogeneie und Entwicklungsökologie. Berl Geowiss Abh (E) 2:1–164

    Google Scholar 

  • Mehl D, Müller I, Müller WEG (1998) Molecular biological and palaeontological evidence that Eumetazoa, including Porifera (sponges), are of monophyletic origin. In: Watanabe Y, Fusetani N, (eds) Sponge science: multidisciplinary perspectives. Springer, Tokyo, pp 133–156

    Google Scholar 

  • Müller WEG (1995) Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwissenschaften 82:321–329

    PubMed  Google Scholar 

  • Müller WEG (1998) Origin of Metazoa: sponges as living fossils. Naturwissenschaften 85:11–25

    Google Scholar 

  • Müller WEG (2001) How was metazoan threshold crossed: the hypothetical Urmetazoa. Comp Biochem Physiol (A) 129:433–460

    Google Scholar 

  • Müller WEG (2003) The origin of metazoan complexity: Porifera as integrated animals. Integ Comp Biol (in press)

    Google Scholar 

  • Müller WEG, Zahn RK (1968) Tethya limski n.sp, eine Tethyide aus der Adria (Porifera: Homosclerophorida: Tethyidae). Senckenb Biol 49:469–478

    Google Scholar 

  • Müller WEG, Zahn RK (1973) Purification and characterization of a species-specific aggregation factor in sponges. Exp Cell Res 80:95–104

    PubMed  Google Scholar 

  • Müller WEG, Zahn RK, Bittlingmeier K, Falke D (1977) Inhibition of herpes virus DNA-synthesis by 9-β-D-arabinofuranosyladenosine in vitro and in vivo. Ann N Y Acad Sci 284:34–48

    PubMed  Google Scholar 

  • Müller WEG, Müller IM, Gamulin V (1994) On the monophyletic evolution of the Metazoa, Brazil. J Med Biol Res 27:2083–2096

    Google Scholar 

  • Müller WEG, Blumbach B, Wagner-Hülsmann C, Lessel U (1997) Galectins in the phylogenetically oldest metazoa, the sponges (Porifera). Trends Glycosci Glycotechnol 9:123–130

    Google Scholar 

  • Müller WEG, Blumbach B, Müller IM (1999) Evolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum (Porifera) and those in vertebrates. Transplantation 68:1215–1227

    PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Skorokhod A, Bünz C, Müller IM, Grebenjuk VA (2001) Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa). Gene 276:161–173

    Article  PubMed  Google Scholar 

  • Müller WEG, Grebenjuk VA, Le Pennec G, Schröder HC, Brümmer F, Hentschel U, Müller IM, Breter HJ (2003a) Sustainable production of bioactive compounds by sponges: cell culture and gene cluster approach. Marine Biotechnol (in press)

    Google Scholar 

  • Müller WEG, Krasko A, Le Pennec G, Steffen R, Ammar MSA, Müller IM, Schröder HC (2003b) Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein–collagen–myotrophin. Mar Mol Biotechnol (in press)

  • Murakami Y, Oshima Y, Yasumoto T (1982) Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Nihon Sisan Gakkaishi 48:69–72

    CAS  Google Scholar 

  • Nardo GD (1834) Possibile applicazione alle arti degli aghi silicei costituenti il tessuto solido di alcuni Spongiali del Mare Adriatico. Giorn Tecno e Belle Art, p 83

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Nevo E, Beiles A, Ben-Schlomo R (1984) The evolutionary significance of genetic diversity: ecology, demographic and life history correlates. In: Mani GS (ed) Evolutionary dynamics of genetic diversity. Springer, Berlin Heidelberg New York, pp 13–212

  • Nishizuka Y (1992) Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

  • Ohno S (1998) The notion of the Cambrian Pananimalia genome and a genomic difference that separated vertebrates from invertebrates. Prog Mol Subcell Biol 21:97–117

    CAS  PubMed  Google Scholar 

  • Okulitch VJ (1955) Archaeocyatha and Porifera. In: Moore RC (ed) Treatise on invertebrate paleontology. University of Kansas Press, Lawrence, Kan., pp E1–E20

  • Pancer Z, Skorokhod A, Blumbach B, Müller WEG (1998) Multiple Ig-like featuring genes divergent within and among individuals of the marine sponge Geodia cydonium. Gene 207:227–233

    Article  CAS  PubMed  Google Scholar 

  • Paul J (1970) Sedimentologische Untersuchungen eines küstennahen mediterranen Schlammbodens (Limski Kanal, nördliche Adria). Geol Rdsch 60:205–222

    CAS  Google Scholar 

  • Pechenik JA (2000) Biology of the invertebrates. McGraw Hill, Boston

  • Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J (2000) Mortalité massive d'invertébrés marins: un événement san précédent en Méditerranée nord-occidentale. C R Acad Sci Paris (Sci Vie) 323:853–865

    Google Scholar 

  • Perovic S, Schröder HC, Sudek S, Grebenjuk VA, Batel R, Štifanic M, Müller IM, Müller WEG (2003) Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Devel (in press)

  • Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 3:179–184

    CAS  PubMed  Google Scholar 

  • Pomponi SA (1979) Ultrastructure and cytochemistry of the etching area of boring sponges. In: Lévi C, Boury-Esnault N (eds) Biologie des spongiaires. Colloq Int CNRS 291:319–323

    Google Scholar 

  • Proksch P (1994) Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon 32:639–655

    CAS  PubMed  Google Scholar 

  • Proksch P, Edrada RA, Ebel R (2002) Drugs from the sea: current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134

    Article  CAS  PubMed  Google Scholar 

  • Pronzato R (1999) Sponge-fishing, disease and farming in the Mediterranean Sea. Aquat Conserv Mar Freshwater Ecosyst 9:485–493

    Article  Google Scholar 

  • Reiswig H (1971) In situ pumping activities of tropical demospongiae. Mar Biol 9:38–50

    Google Scholar 

  • Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–730

    Google Scholar 

  • Rützler K (1965) Systematik und Ökologie der Poriferen aus Litoral-Schattengebieten der Nordadria. Z Morphol Oekol Tiere 55:1–82

    Google Scholar 

  • Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol 21:144–162

    Google Scholar 

  • Salomon CE, Deerinck T, Ellisman M, Faulkner DJ (2001) The cellular localization of dercitamide in the Palauan sponge Oceanapia sagittaria. Mar Biol 139:313–319

    Article  CAS  Google Scholar 

  • Sarma AS, Daum T, Müller WEG (1993) Secondary metabolites from marine sponges. Akademie gemeinnütziger Wissenschaften zu Erfurt, Ullstein-Mosby , Berlin

  • Scheuer PJ (1990) Some marine ecological phenomena: chemical basis and biomedical potential. Science 248:173–177

    CAS  PubMed  Google Scholar 

  • Schilthuizen M (2000) Dualism and conflicts in understanding speciation. BioEssays 22:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Schröder HC, Efremova SM, Itskovich VB, Krasko A, Müller IM, Müller WEG (2003a) Molecular phylogeny of the freshwater sponges in Lake Baikal. J Zool Syst Evol Res (in press)

  • Schröder HC, Krasko A, Le Pennec G, Adell T, Hassanein H, Müller IM, Müller WEG (2003b) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Mar Mol Biotechnol (in press)

    Google Scholar 

  • Seack J, Kruse M, Müller IM, Müller WEG (1999) Promoter and exon-intron structure of the protein kinase C gene from the marine sponge Geodia cydonium: evolutionary considerations and promoter activity. Biochim Biophys Acta 1444:241–253

    CAS  PubMed  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New York

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    CAS  PubMed  Google Scholar 

  • Smith JLB (1939) A living coelacanthid fish from South Africa. Nature 143:748–750

    Google Scholar 

  • Soest RWM van (1991) Demosponge higher taxa classification re-examined. In: Reitner J, Keupp H (eds) Fossil and recent sponges. Springer, Berlin Heidelberg New York, pp 54–71

  • Soest RWM van (1994) Demosponge distribution patterns. In: Soest RWM van, Balkema AA (eds) Sponges in time and space. Brookfield, Rotterdam, pp 213–223

  • Soest RWM van, Braekman JC (1999) Chemosystematics of Porifera: a review. Mem Queensl Mus 44:569–589

    Google Scholar 

  • Solé-Cava AM, Boury-Esnault N, Vacelet J, Thorpe JP (1992) Biochemical genetic divergence and systematics is sponges of the genera Corticum and Oscarella (Demospongiae: Homoscleromorpha) in the Mediterranean Sea. Mar Biol 113:299–304

    Google Scholar 

  • Steiner M, Mehl D, Reitner J, Erdtmann BD (1993) Oldest entirely preserved sponges and other fossils from the Lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berl Geowiss Abh (E) 9:293–329

    Google Scholar 

  • Steuer A (1933) Zur Fauna des Canal di Leme bei Rovigno. Thalassia 1:1–43

    Google Scholar 

  • Tachibana K, Scheuer PJ, Tsukitani Y, Kikushi H, Engen DV, Clardy J, Gopichand Y, Schmitz FJ (1981) Okadaic acid a cytotoxic polyether from the marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471

    CAS  Google Scholar 

  • Thakur NL, Hentschel U, Krasko A, Pabel CT, Anil AC, Müller WEG (2003) Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense. Aquat Microb Ecol 31:77–83

    Google Scholar 

  • UNEP (2000) Sustaining life on Earth: how the Convention on Biological Diversity promotes nature and human well-being. UNEP and CBD Secretariat, Genf, pp 1–21

    Google Scholar 

  • Vacelet J (1975) Étude en microscopie électronique de l'association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288

    Google Scholar 

  • Vacelet J, Boury-Esnault N (1995) Carnivorous sponges. Nature 373:333–335

    CAS  Google Scholar 

  • Vatova A (1928) Compendio della flora e fauna del Mare Adriatico presso Rovigno. C. Ferrari, Venezia

  • Vinogradov AP (1953) The elementary chemical composition of marine organisms. Sears Foundation, New Haven, Conn.

  • Vogel S (1977) Current-induced flow through living sponges in nature. Proc Natl Acad Sci USA 74:2069–2071

    CAS  PubMed  Google Scholar 

  • Weinbaum G, Burger MM (1973) A two-component system for surface guided reassociation of animal cells. Nature 244:510–512

    CAS  Google Scholar 

  • Wessjohann LA (2000) Synthesis of natural-product-based compound library. Curr Opin Chem Biol 4:303–309

    Article  CAS  PubMed  Google Scholar 

  • Wiens M, Luckas B, Brümmer F, Shokry M, Ammar A, Steffen R, Batel R, Diehl-Seifert B, Schröder HC, Müller WEG (2003) Okadaic acid: a potential defense toxin for the sponge Suberites domuncula. Mar Biol 142:213–223

    CAS  Google Scholar 

  • Wilkinson CR (1978) Microbial association in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar Biol 49:161–167

    Google Scholar 

  • Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interactions explored. Biopress, Bristol, pp 111–151

    Google Scholar 

  • Williams DH, Stone HJ, Hauck PR, Rahman SK (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52:1189–1192

    CAS  PubMed  Google Scholar 

  • Wilson EO (1992) The diversity of life. Harvard University Press, Cambridge, Mass.

Download references

Acknowledgements

Supported by the Center of Environmental Research (University of Mainz), the International Human Frontier Science Program (RG-333/96-M) and the Bundesministerium für Bildung und Forschung (project: Center of Excellence Biotecmarin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner E. G. Müller.

Additional information

Dedicated to the founder of modern marine chemical ecology, Prof. Paul J. Scheuer (University of Hawai'i).

W.E.G. Müller is a member of the Croatian Academy of Science and Art.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W.E.G., Brümmer, F., Batel, R. et al. Molecular biodiversity. Case study: Porifera (sponges). Naturwissenschaften 90, 103–120 (2003). https://doi.org/10.1007/s00114-003-0407-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-003-0407-6

Keywords

Navigation