Skip to main content
Log in

Zementaugmentation und Knochenersatz – Materialien und Biomechanik

Cement augmentation and bone graft substitutes—Materials and biomechanics

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bei Zementaugmentation und Knochenersatz finden Materialien mit unterschiedlichen Eigenschaften Anwendung.

Fragestellung

Zementaugmentation und Knochenersatzmaterialien sind Gegenstand aktueller Forschung. Die Bewertung neuer Erkenntnisse erlaubt ihren spezifischen Einsatz.

Material und Methoden

Selektive Literaturrecherche und Zusammenstellung experimenteller Ergebnisse zu Zementaugmentation und Knochenersatz.

Ergebnisse

Augmentation und Knochenersatz sind feste Bestandteile der aktuellen Unfallchirurgie. Trotz intensiver Erforschung weisen alle Materialien spezifische Nachteile auf. Die Zementaugmentation von Implantaten verstärkt nicht nur deren Verankerung, sondern verändert auch den Versagensmodus.

Schlussfolgerung

Besonders im osteoporotischen Knochen hat die Zementaugmentation großes Potenzial. Im lasttragenden Bereich bleiben weiterhin Acrylzemente der Standard. Keramikzemente sind in nichtlasttragenden Bereichen zu bevorzugen. Ihre Kombination mit resorbierbaren Metallen bietet ein noch weitgehend unerforschtes Potenzial. Die virtuelle Biomechanik kann die zielgerichtete Anwendung von Zementaugmentationen verbessern.

Abstract

Background

Materials with different characteristics are used for cement augmentation and as bone graft substitutes.

Objective

Cement augmentation and bone graft substitutes are the subject of current research. The evaluation of new knowledge allows its specific application.

Material and methods

Selective literature search and outline of experimental research results on cement augmentation and bone graft substitutes.

Results

Augmentation and bone graft substitutes are essential components of current trauma surgical procedures. Despite intensive research all materials have specific disadvantages. Cement augmentation of implants enhances not only the anchorage but also influences the failure mode.

Conclusion

Cement augmentation has large potential especially in osteoporotic bone. In load-bearing regions acrylic-based cements remain the standard of choice. Ceramic cements are preferred in non-load-bearing areas. Their combination with resorbable metals offers still largely unexplored potential. Virtual biomechanics can help improve the targeted application of cement augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Beckmann J, Springorum R, Vettorazzi E et al (2011) Fracture prevention by femoroplasty—cement augmentation of the proximal femur. J Orthop Res 29:1753–1758

    Article  CAS  PubMed  Google Scholar 

  2. Brueckner T, Heilig P, Jordan MC et al (2019) Biomechanical evaluation of promising different bone substitutes in a clinically relevant test set-up. Materials (Basel) 12(9):1364. https://doi.org/10.3390/ma12091364

    Article  CAS  Google Scholar 

  3. Burkhard B, Schopper C, Ciric D et al (2021) Overdrilling increases the risk of screw perforation in locked plating of complex proximal humeral fractures—a biomechanical cadaveric study. J Biomech 117:110268

    Article  PubMed  Google Scholar 

  4. Chaya A, Yoshizawa S, Verdelis K et al (2015) In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater 18:262–269

    Article  CAS  PubMed  Google Scholar 

  5. Ciric D, Mischler D, Qawasmi F et al (2019) Secondary perforation risk in plate osteosynthesis of unstable proximal humerus fractures: a biomechanical investigation of the effect of screw length. J Orthop Res 37:2625–2633

    Article  PubMed  Google Scholar 

  6. Cristofolini L, Ruspi ML, Marras D et al (2021) Reconstruction of proximal humeral fractures without screws using a reinforced bone substitute. J Biomech 115:110138

    Article  PubMed  Google Scholar 

  7. Fletcher JWA, Windolf M, Grunwald L et al (2019) The influence of screw length on predicted cut-out failures for proximal humeral fracture fixations predicted by finite element simulations. Arch Orthop Trauma Surg 139:1069–1074

    Article  PubMed  Google Scholar 

  8. Fletcher JWA, Windolf M, Richards RG et al (2019) Importance of locking plate positioning in proximal humeral fractures as predicted by computer simulations. J Orthop Res 37:957–964

    Article  CAS  PubMed  Google Scholar 

  9. Fletcher JWA, Windolf M, Richards RG et al (2019) Screw configuration in proximal humerus plating has a significant impact on fixation failure risk predicted by finite element models. J Shoulder Elbow Surg 28:1816–1823

    Article  PubMed  Google Scholar 

  10. Fliri L, Sermon A, Wahnert D et al (2013) Limited V‑shaped cement augmentation of the proximal femur to prevent secondary hip fractures. J Biomater Appl 28:136–143

    Article  PubMed  Google Scholar 

  11. Goetzen M, Windolf M, Schmoelz W (2014) Augmented screws in angular stable plating of the proximal humerus: what to do when revision is needed? Clin Biomech (Bristol, Avon) 29:1023–1026

    Article  Google Scholar 

  12. Goff T, Kanakaris NK, Giannoudis PV (2013) Use of bone graft substitutes in the management of tibial plateau fractures. Injury 44(1):S86–94

    Article  PubMed  Google Scholar 

  13. Grechenig S, Gansslen A, Gueorguiev B et al (2015) PMMA-augmented SI screw: a biomechanical analysis of stiffness and pull-out force in a matched paired human cadaveric model. Injury 46(4):S125–128

    Article  PubMed  Google Scholar 

  14. Grüneweller N, Raschke MJ, Zderic I et al (2017) Biomechanical comparison of augmented versus non-augmented sacroiliac screws in a novel hemi-pelvis test model. J Orthop Res 35:1485–1493

    Article  PubMed  Google Scholar 

  15. Hanke A, Baumlein M, Lang S et al (2017) Long-term radiographic appearance of calcium-phosphate synthetic bone grafts after surgical treatment of tibial plateau fractures. Injury 48:2807–2813

    Article  PubMed  Google Scholar 

  16. Heilig P, Jordan MC, Paul MM et al (2022) Augmentation of suture anchors with magnesium phosphate cement—simple technique with striking effect. J Mech Behav Biomed Mater 128:105096

    Article  CAS  PubMed  Google Scholar 

  17. Heilig P, Sandner P, Jordan MC et al (2021) Experimental drillable magnesium phosphate cement is a promising alternative to conventional bone cements. Materials (Basel) 14(8):1925

    Article  CAS  Google Scholar 

  18. Heini PF, Franz T, Fankhauser C et al (2004) Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clin Biomech (Bristol, Avon) 19:506–512

    Article  Google Scholar 

  19. Hurle K, Weichhold J, Brueckner M et al (2018) Hydration mechanism of a calcium phosphate cement modified with phytic acid. Acta Biomater 80:378–389

    Article  CAS  PubMed  Google Scholar 

  20. Johnson JP, Norris G, Giannoudis PV (2018) Bone augmentation: is it really needed? Injury 49:1367–1372

    Article  PubMed  Google Scholar 

  21. Kim JK, Koh YD, Kook SH (2011) Effect of calcium phosphate bone cement augmentation on volar plate fixation of unstable distal radial fractures in the elderly. J Bone Joint Surg Am 93:609–614

    Article  PubMed  Google Scholar 

  22. Kim T, See CW, Li X et al (2020) Orthopedic implants and devices for bone fractures and defects: past, present and perspective. Eng Regen 1:6–18

    Google Scholar 

  23. Larsson S, Procter P (2011) Optimising implant anchorage (augmentation) during fixation of osteoporotic fractures: is there a role for bone-graft substitutes? Injury 42(2):S72–76

    Article  PubMed  Google Scholar 

  24. Lodde MF, Katthagen JC, Schopper CO et al (2021) Does cement augmentation of the sacroiliac screw lead to superior biomechanical results for fixation of the posterior pelvic ring? A biomechanical study. Medicina (Kaunas) 57(12):1368

    Article  Google Scholar 

  25. Nabiyouni M, Bruckner T, Zhou H et al (2018) Magnesium-based bioceramics in orthopedic applications. Acta Biomater 66:23–43

    Article  CAS  PubMed  Google Scholar 

  26. Pastor T, Zderic I, Gehweiler D et al (2021) Biomechanical analysis of recently released cephalomedullary nails for trochanteric femoral fracture fixation in a human cadaveric model. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-04239-7

    Article  PubMed  Google Scholar 

  27. Sas A, Van Camp D, Lauwers B et al (2020) Cement augmentation of metastatic lesions in the proximal femur can improve bone strength. J Mech Behav Biomed Mater 104:103648

    Article  CAS  PubMed  Google Scholar 

  28. Schaller B, Saulacic N, Imwinkelried T et al (2016) In vivo degradation of magnesium plate/screw osteosynthesis implant systems: soft and hard tissue response in a calvarial model in miniature pigs. J Craniomaxillofac Surg 44:309–317

    Article  PubMed  Google Scholar 

  29. Schütze K, Eickhoff A, Röderer G et al (2019) Osteoporotic bone: when and how to use augmentation? J Orthop Trauma 33(8):S21–S26

    Article  Google Scholar 

  30. Sutter EG, Wall SJ, Mears SC et al (2010) The effect of cement placement on augmentation of the osteoporotic proximal femur. Geriatr Orthop Surg Rehabil 1:22–26

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van Lieshout EM, Alt V (2016) Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence? Injury 47(1):S43–46

    Article  PubMed  Google Scholar 

  32. Van Lieshout EM, Van Kralingen GH, El-Massoudi Y et al (2011) Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskelet Disord 12:34

    Article  PubMed  PubMed Central  Google Scholar 

  33. Varga P, Hofmann-Fliri L, Blauth M et al (2016) Prophylactic augmentation of the osteoporotic proximal femur-mission impossible? Bonekey Rep 5:854

    Article  PubMed  PubMed Central  Google Scholar 

  34. Varga P, Inzana JA, Fletcher JWA et al (2020) Cement augmentation of calcar screws may provide the greatest reduction in predicted screw cut-out risk for proximal humerus plating based on validated parametric computational modelling: augmenting proximal humerus fracture plating. Bone Joint Res 9:534–542

    Article  PubMed  PubMed Central  Google Scholar 

  35. Varga P, Inzana JA, Gueorguiev B et al (2018) Validated computational framework for efficient systematic evaluation of osteoporotic fracture fixation in the proximal humerus. Med Eng Phys 57:29–39

    Article  PubMed  Google Scholar 

  36. Varga P, Inzana JA, Schwiedrzik J et al (2017) New approaches for cement-based prophylactic augmentation of the osteoporotic proximal femur provide enhanced reinforcement as predicted by non-linear finite element simulations. Clin Biomech (Bristol, Avon) 44:7–13

    Article  Google Scholar 

  37. Wähnert D, Grüneweller N, Gueorguiev B et al (2021) Removal of cement-augmented screws in distal femoral fractures and the effect of retained screws and cement on total knee arthroplasty: a biomechanical investigation. J Orthop Traumatol 22:5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Windolf M (2015) Biomechanik der Implantaugmentation. Unfallchirurg 118:765–771

    Article  CAS  PubMed  Google Scholar 

  39. Yousefi AM (2019) A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation. J Appl Biomater Funct Mater 17:2280800019872594

    PubMed  Google Scholar 

  40. Zderic I, Steinmetz P, Benneker LM et al (2017) Bone cement allocation analysis in artificial cancellous bone structures. J Orthop Translat 8:40–48

    Article  PubMed  Google Scholar 

  41. Zderic I, Steinmetz P, Windolf M et al (2016) Bone cement flow analysis by stepwise injection through medical cannulas. Med Eng Phys 38:1434–1438

    Article  PubMed  Google Scholar 

  42. Zhang YF, Xu JK, Ruan YC et al (2016) Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med 22:1160–1169

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyko Gueorguiev PhD.

Ethics declarations

Interessenkonflikt

B. Gueorguiev und M. Lenz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Dankward Höntzsch, Tübingen

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueorguiev, B., Lenz, M. Zementaugmentation und Knochenersatz – Materialien und Biomechanik. Unfallchirurgie 125, 430–435 (2022). https://doi.org/10.1007/s00113-022-01182-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01182-z

Schlüsselwörter

Keywords

Navigation