Skip to main content
Log in

Transkutane osseointegrierte Prothesensysteme (TOPS) nach Extremitätenamputation

Status quo und Ausblick

Transcutaneous osseointegrated prosthesis (TOP) after limb amputation

Status quo and perspectives

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Die Mehrheit transfemoral und -tibial Amputierter kann mit der herkömmlichen Prothesentechnik funktionell zufriedenstellend versorgt werden. Dennoch haben ca. 60 % der Patienten erhebliche Probleme mit der konventionellen Stumpfversorgung, sodass selbst jüngere Patienten in ca. 1/6 der Fälle ihre Prothese nicht täglich tragen können. Nach Einführung der transkutanen osseointegrierten Prothesensysteme (TOPS) besteht für diese Patienten die Möglichkeit, stumpfassoziierte Probleme zu vermeiden. Die vorliegende Übersicht zeigt den aktuellen Stand der Entwicklung transkutaner osseointegrierter Prothesensysteme in Schweden, Deutschland, den Niederlanden, Australien und den USA – heute mittlerweile in 9 Zentren. Bei den Arbeitsgruppen dieser Zentren besteht Übereinstimmung, dass TOPS eine Situation der Endbelastung, eine verbesserte Beweglichkeit der proximalen Gelenke, ein osseoperzeptives sensorisches Feedback und damit eine bessere Kontrolle der betroffenen Extremität ermöglicht. Ebenso besteht Übereinstimmung, dass in der Regel eine klinisch weniger relevante oberflächliche Kontamination des Stomas besteht. TOPS wird heute auch zur Versorgung transhumeral Amputierter und nach Daumenverlust eingesetzt, inzwischen mit einer Ausweitung der Indikation für diese Technik. Für zukünftige Anwendungen besteht die Möglichkeit, in das intramedulläre Implantat Elektroden zu verlegen und somit eine fortlaufende bidirektionale Kommunikation mit dem Körper zu erlauben („osseointegrated human-machine gateway“). So können eventuell eine innovative Form der Prothesenkontrolle, aber auch die Möglichkeit der Kombination mit der Targeted-muscle-reinnervation(TMR)-Chirurgie realisiert werden, um schließlich weiter fortgeschrittene Prothesenmodelle für die obere und untere Extremitätenamputationschirurgie zu entwickeln.

Abstract

The majority of transfemoral and transtibial amputees can be functionally fitted with conventional suspension sockets; however, due to socket problems using conventional stump care, 60% of the patients have limited function and even in younger patients approximately one sixth are unable to wear the prosthesis daily. After the introduction of transcutaneous osseointegrated prostheses (TOP) the inherent problems of socket-stump care can be avoided for these patients. Against this background this article reviews the recent clinical development of TOP in Sweden, Germany, the Netherlands, Australia and USA currently in nine centers. Unanimously, all groups show that TOP enables physiological weight bearing, improved range of motion in the proximal joint, as well as osseoperceptive sensory feedback and better control of the artificial limb. Likewise, there is agreement that as a rule that there is a clinically less relevant superficial contamination of the stoma. Furthermore, TOP is nowadays also used for transhumeral amputees and after thumb amputation and the development of the indications for this technique are increasing. Future aspects include novel treatment options using implanted intramedullary electrodes allowing permanent and unlimited bidirectional communication with the human body (osseointegrated human-machine gateway). This could possibly realize an innovative form of prosthesis control as well as the combination of TOP and targeted muscle reinnervation (TMR) surgery to create more advanced prosthesis systems for upper and lower extremity amputees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. http://www.huffingtonpost.com/2012/11/07/iraq-afghanistan-amputees_n_2089911.html2012. Zugegriffen: 08.02.2017

  2. https://www.gov.uk/government/collections/uk-service-personnel-amputation-statistics-index. Zugegriffen: 08.02.2017

  3. Penn-Barwell JG, Bennett PM, Kay A, Sargeant ID (2014) Severe Lower Extremity Combat Trauma (SeLECT) study group: acute bilateral leg amputation following combat injury in UK servicemen. Injury 45(7):1105–1110

    Article  CAS  PubMed  Google Scholar 

  4. Krueger CA, Wenke JC, Ficke JR (2012) Ten years at war: comprehensive analysis of amputation trends. J Trauma Acute Care Surg 73(6 Suppl 5):438–444

    Article  Google Scholar 

  5. Staubach KH, Grundei H (2001) The first osseointegrated percutaneous prosthesis anchor for above-knee amputees. Biomed Tech (Berl) 46(12):355–361

    Article  CAS  Google Scholar 

  6. Branemark R, Branemark PI, Rydevik B, Myers RR (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38(2):175–181

    CAS  PubMed  Google Scholar 

  7. Levy SW (1995) Amputees: skin problems and prostheses. Cutis 55(5):297–301

    CAS  PubMed  Google Scholar 

  8. Lyon C, Kulkarni J, Zimerson E (2000) Skin disorders in amputees. J Am Acad Dermatol 42:501–507

    Article  CAS  PubMed  Google Scholar 

  9. Meulenbelt HE, Geertzen JH, Jonkman MF, Dijkstra PU (2011) Skin problems of the stump in lower limb amputees: 1. A clinical study. Acta Derm Venereol 91(2):173–177

    Article  PubMed  Google Scholar 

  10. Meulenbelt HE, Geertzen JH, Jonkman MF, Dijkstra PU (2011) Skin problems of the stump in lower-limb amputees: 2. Influence on functioning in daily life. Acta Derm Venereol 91(2):178–182

    Article  PubMed  Google Scholar 

  11. Hagberg K, Branemark R (2001) Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int 25(3):186–194

    Article  CAS  PubMed  Google Scholar 

  12. Van de Meent H, Hopman MT, Frolke JP (2013) Walking ability and quality of life in subjects with transfemoral amputation: a comparison of osseointegration with socket prostheses. Arch Phys Med Rehabil 94(11):2174–2178

    Article  PubMed  Google Scholar 

  13. Leijendekkers RA, van Hinte G, Nijhuis-van der Sanden MW, Staal JB (2017) Gait rehabilitation for a patient with an osseointegrated prosthesis following transfemoral amputation. Physiother Theory Pract 33(2):147–161

    Article  PubMed  Google Scholar 

  14. Lenneras M, Tsikandylakis G, Trobos M, Omar O, Vazirisani F, Palmquist A et al (2017) The clinical, radiological, microbiological, and molecular profile of the skin-penetration site of transfemoral amputees treated with bone-anchored prostheses. J Biomed Mater Res A 105(2):578–589

    Article  CAS  PubMed  Google Scholar 

  15. Aschoff HH, Juhnke DL (2016) Endo-exo prostheses: osseointegrated percutaneously channeled implants for rehabilitation after limb amputation. Unfallchirurg 119(5):421–427

    Article  PubMed  Google Scholar 

  16. Juhnke DL, Beck JP, Jeyapalina S, Aschoff HH (2015) Fifteen years of experience with integral-leg-prosthesis: cohort study of artificial limb attachment system. J Rehabil Res Dev 52(4):407–420

    Article  PubMed  Google Scholar 

  17. Juhnke DL, Aschoff HH (2015) Endo-exo prostheses following limb-amputation. Orthopäde 44(6):419–425

    Article  PubMed  Google Scholar 

  18. Frölke JP, Leijendekkers RA, van de Meent H (2017) Osseointegrated prosthesis for patients with an amputation: multidisciplinary team approach in the Netherlands. Unfallchirurg. doi:10.1007/s00113-016-0302-1

    PubMed  PubMed Central  Google Scholar 

  19. Al Muderis M, Aschoff H, Bosley B, Raz G, Gerdesmeyer L, Burkett B (2016) Direct skeletal attachment prosthesis for the amputee athlete: the unknown potential. Sports Eng 19(3):141–145. doi:10.1007/s12283-016-0196-8

    Article  Google Scholar 

  20. Ortiz-Catalan M, Hakansson B, Branemark R (2014) An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med 6(257):257re6

    Article  PubMed  Google Scholar 

  21. Salminger S, Gradischar A, Skiera R, Roche AD, Sturma A, Hofer C et al (2016) Attachment of upper arm prostheses with a subcutaneous osseointegrated implant in transhumeral amputees. Prosthet Orthot Int. doi:10.1177/0309364616665732

    PubMed  Google Scholar 

  22. Leijendekkers RA, Staal JB, van Hinte G, Frolke JP, van de Meent H, Atsma F et al (2016) Long-term outcomes following lower extremity press-fit bone-anchored prosthesis surgery: a 5-year longitudinal study protocol. BMC Musculoskelet Disord 17(1):484

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zaborowska M, Tillander J, Branemark R, Hagberg L, Thomsen P, Trobos M (2016) Biofilm formation and antimicrobial susceptibility of staphylococci and enterococci from osteomyelitis associated with percutaneous orthopaedic implants. J Biomed Mater Res Part B Appl Biomater. doi:10.1002/jbm.b.33803

    PubMed  Google Scholar 

  24. Stenlund P, Trobos M, Lausmaa J, Branemark R, Thomsen P, Palmquist A (2016) Effect of load on the bone around bone-anchored amputation prostheses. J Orthop Res. doi:10.1002/jor.23352

    PubMed  Google Scholar 

  25. Vertriest S, Coorevits P, Hagberg K, Branemark R, Haggstrom E, Vanderstraeten G et al (2015) Static load bearing exercises of individuals with transfemoral amputation fitted with an osseointegrated implant: reliability of kinetic data. IEEE Trans Neural Syst Rehabil Eng 23(3):423–430

    PubMed  Google Scholar 

  26. Schalk SA, Jonkergouw N, van der Meer F, Swaan WM, Aschoff HH, van der Wurff P (2015) The evaluation of daily life activities after application of an osseointegrated prosthesis fixation in a bilateral transfemoral amputee: a case study. Medicine (Baltimore) 94(36):e1416

    Article  CAS  Google Scholar 

  27. Palmquist A, Windahl SH, Norlindh B, Branemark R, Thomsen P (2014) Retrieved bone-anchored percutaneous amputation prosthesis showing maintained osseointegration after 11 years-a case report. Acta Orthop 85(4):442–445

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hagberg K, Hansson E, Branemark R (2014) Outcome of percutaneous osseointegrated prostheses for patients with unilateral transfemoral amputation at two-year follow-up. Arch Phys Med Rehabil 95(11):2120–2127

    Article  PubMed  Google Scholar 

  29. Branemark R, Berlin O, Hagberg K, Bergh P, Gunterberg B, Rydevik B (2014) A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Joint J 96-B(1):106–113. doi:10.1302/0301-620x.96b1.31905

    Article  CAS  PubMed  Google Scholar 

  30. Haggstrom EE, Hansson E, Hagberg K (2013) Comparison of prosthetic costs and service between osseointegrated and conventional suspended transfemoral prostheses. Prosthet Orthot Int 37(2):152–160

    Article  PubMed  Google Scholar 

  31. Haggstrom E, Hagberg K, Rydevik B, Branemark R (2013) Vibrotactile evaluation: osseointegrated versus socket-suspended transfemoral prostheses. J Rehabil Res Dev 50(10):1423–1434

    Article  PubMed  Google Scholar 

  32. Frossard L, Haggstrom E, Hagberg K, Branemark R (2013) Load applied on bone-anchored transfemoral prosthesis: characterization of a prosthesis-a pilot study. J Rehabil Res Dev 50(5):619–634

    Article  PubMed  Google Scholar 

  33. Leijendekkers RA, van Hinte G, Frolke JP, van de Meent H, Nijhuis-van der Sanden MW, Staal JB (2016) Comparison of bone-anchored prostheses and socket prostheses for patients with a lower extremity amputation: a systematic review. Disabil Rehabil:. doi:10.1080/09638288.2016.1186752

    PubMed  Google Scholar 

  34. Haket LM, Frolke JP, Verdonschot N, Tomaszewski PK, van de Meent H (2016) Periprosthetic cortical bone remodeling in patients with an osseointegrated leg prosthesis. J Orthop Res. doi:10.1002/jor.23376

    PubMed  Google Scholar 

  35. Tomaszewski PK, Verdonschot N, Bulstra SK, Rietman JS, Verkerke GJ (2012) Simulated bone remodeling around two types of osseointegrated implants for direct fixation of upper-leg prostheses. J Mech Behav Biomed Mater 15:167–175

    Article  CAS  PubMed  Google Scholar 

  36. Tomaszewski PK, van Diest M, Bulstra SK, Verdonschot N, Verkerke GJ (2012) Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss. J Biomech 45(11):1875–1880

    Article  CAS  PubMed  Google Scholar 

  37. Al Muderis M, Lu W, Li JJ (2017) Osseointegrated prosthetic limb for the treatment of lower limb amputations: experience and outcomes. Unfallchirurg. doi:10.1007/s00113-016-0296-8

    PubMed  Google Scholar 

  38. Muderis MA, Tetsworth K, Khemka A, Wilmot S, Bosley B, Lord SJ et al (2016) The Osseointegration Group of Australia Accelerated Protocol (OGAAP-1) for two-stage osseointegrated reconstruction of amputated limbs. Bone Joint J 98-B(7):952–960

    Article  PubMed  Google Scholar 

  39. Khemka A, FarajAllah CI, Lord SJ, Bosley B, Al Muderis M (2016) Osseointegrated total hip replacement connected to a lower limb prosthesis: a proof-of-concept study with three cases. J Orthop Surg Res 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  40. Al Muderis M, Khemka A, Lord SJ, Van de Meent H, Frolke JP (2016) Safety of osseointegrated implants for transfemoral amputees: a two-center prospective cohort study. J Bone Joint Surg Am 98(11):900–909

    Article  PubMed  Google Scholar 

  41. Al Muderis M, Bosley BA, Florschutz AV, Lunseth PA, Klenow TD, Highsmith MJ et al (2016) Radiographic assessment of extremity osseointegration for the amputee. Technol Innov 18(2–3):211–216

    Article  PubMed  PubMed Central  Google Scholar 

  42. Khemka A, Frossard L, Lord SJ, Bosley B, Al Muderis M (2015) Osseointegrated total knee replacement connected to a lower limb prosthesis: 4 cases. Acta Orthop 86(6):740–744

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Willy.

Ethics declarations

Interessenkonflikt

C. Willy und C. Krettek geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

H. Aschoff, Hannover

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willy, C., Krettek, C. Transkutane osseointegrierte Prothesensysteme (TOPS) nach Extremitätenamputation. Unfallchirurg 120, 395–402 (2017). https://doi.org/10.1007/s00113-017-0347-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-017-0347-9

Schlüsselwörter

Keywords

Navigation