Skip to main content
Log in

Perkutane Applikation von rekombinantem humanem Bone Morphogenetic Protein-7 (rhBMP-7) nach Kallusdistraktion

Zwei Fallberichte

Percutaneous administration of recombinant human bone morphogenetic protein-7 (rhBMP-7) after callus distraction

Two case reports

  • Kasuistiken
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

In der vorliegenden Arbeit werden 2 Fälle von zunehmender Kallusdichte nach der perkutanen Applikation von 3,5 mg rekombinantem humanem Bone Morphogenetic Protein-7 (rhBMP-7) beschrieben. Beide Patienten wurden nach Osteitis der langen Röhrenknochen (Femur und Tibia) und Segmentresektion mittels Segmenttransport behandelt, wobei jedoch eine Kallusreifung ausblieb. Nach perkutaner Applikation von rhBMP-7 zeigte der Transportkallus beider Patienten eine zunehmende Knochendichte.

Abstract

Two cases of increased bone density after callus distraction are described following percutaneous administration of 3.5 mg recombinant bone morphogenetic protein-7 (rhBMP-7). Both patients underwent segmental resection and segmental transport for osteomyelitis of the long bones (femur and tibia) but no callus maturation occurred. After percutaneous administration of rhBMP-7 the callus density increased in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Yasui N, Kojimoto H, Sasaki K et al (1993) Factors affecting callus distraction in limb lengthening. Clin Orthop 293:55–60

    PubMed  Google Scholar 

  2. Celeste AJ, Iannazzi JA, Taylor RC et al (1990) Identification of transforming growth factor β family members present in bone inductive protein purified from bovine bone. Proc Natl Acad Sci U S A 87:9843

    Article  CAS  PubMed  Google Scholar 

  3. Wang EA, Rosen V, D’Alessandro J et al (1990) Recombinant human bone morphogenic protein induces bone formation. Proc Natl Acad Sci U S A 87:2220

    Article  CAS  PubMed  Google Scholar 

  4. Wozney JM, Rosen V, Celeste AJ et al (1982) Novel regulators of bone formation: molecular clones and activities. Science 42:1528

    Google Scholar 

  5. Cook SD, Wolfe MW, Slakeld SL, Rueger DC (1995) Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg [Am] 77:734–750

    Google Scholar 

  6. Cook SD, Salkeld SL, Brinker MR et al (1998) Use of an osteoinductive biomaterial (rhOP1) in healing large segmental bone defects. J Orthop Trauma 12:407–412

    Article  CAS  PubMed  Google Scholar 

  7. Cook SD, Baffes GC, Wolfe MW et al (1994) The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint Surg [Am] 76:827–838

    Google Scholar 

  8. Zakhary K, Motakis D, Hamdy RH et al (2005) Effect of rh BMP-7 on bone density during distraction osteogenesis of the rabbit mandible. J Otolaryngol 34(6):405–417

    Article  Google Scholar 

  9. Mizumoto Y, Moseley T, Drews M et al (2003) Acceleration of regenerate ossification during distraction osteogenesis with recombinant human BMP-7. J Bone Joint Surg [Am] 85-A (suppl 3):124–130

  10. Sciadini MF, Johnson KD (2000) Evaluation of rhBMP-2 as a bone graft substitute in canine segmental defect model. J Orthop Res 18:289–302

    Article  CAS  PubMed  Google Scholar 

  11. Li RH, Bouxsein ML, Blake CA et al (2003) rhBMP-2 injected in calcium phosphate paste (alpha BSM) accelerates healing in the rabbit ulnar osteotomy model. J Orthop Res 21:997–1004

    Article  CAS  PubMed  Google Scholar 

  12. Tiedemann JJ, Connolly JF, strates BS, Lippiello L (1991) Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix – an experimental study in dogs. Clin Orthop Relat Res 268:294–302

    Google Scholar 

  13. Connolly JF, Guse R, Tiedemann J, Dehene R (1991) Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 266:259–270

    PubMed  Google Scholar 

  14. Terheyden H, Wang H, Warnke PH et al (2003) Acceleration of callus maturation using rhOP-1 in mandibular distraction osteogenesis in a rat model. Int J Oral Maxillofac Surg 32(5):528–533

    CAS  PubMed  Google Scholar 

  15. Anticevic D, Jelic M, Vukicevic S (2006) Treatment of a congenital pseudarthrosis of the tibia by osteogenic protein-1 (bone morphogenetic protein-7): a case report. J Pediatr Orthop B 15(3):220–221

    PubMed  Google Scholar 

  16. Einhorn TA, Majeska RJ, Mohaideen A et al (2003) A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair. J Bone Joint Surg [Am] 85-A(8):1425–1435

  17. Edwards RB, Seeherman HJ, Bogdanske JJ et al (2004) Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy. J Bone Joint Surg [Am] 86-A(7):1425–1438

  18. Yeung HY, Lee SK, Fung KP, Leung KS (2001) Expression of basic fibroblast growth factor during distraction osteogenesis. Clin Orthop Relat Res (385):219–229

    Article  Google Scholar 

  19. Canalis E, Centrella M, MvCarthy TL (1988) Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 81:1672–1577

    Google Scholar 

  20. Nakashima K, Yanagisawa M, Arakawa H et al (1999) synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482

    Article  CAS  PubMed  Google Scholar 

  21. Janknecht R, Hunter T (1999) Nuclear fusion of signaling pathways. Science 284:443–444

    Article  CAS  PubMed  Google Scholar 

  22. Kingsley DM (1994) The TGF-β superfamily: new members, new receptors and new genetic tests of function in different organisms. Genes Dev 8:133–146

    Article  CAS  PubMed  Google Scholar 

  23. Massague J, Attisano L, Wrana JL (1994) The TGF-β family and its composite receptors. Trends Cell Biol 4:172–178

    Article  CAS  PubMed  Google Scholar 

  24. Zioncheck TF, Chen SA, Richardson L et al (1994) Pharmacokinetics and tissue distribution of recombinant human transforming growth factor beta 1 after topical and intravenous administration in male rats. Pharm Res 11(2):213–220

    Article  CAS  PubMed  Google Scholar 

  25. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14(11):1805–1815

    Article  CAS  PubMed  Google Scholar 

  26. Friedlaender GE, Perry CR, Cole JD et al (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg [Am] 83 (suppl 1):S151–S158

    Google Scholar 

  27. Zapf J, Hauri C, Waldvogel M, Froesch ER (1986) Acute metabolic effects and half-lives of intravenously administered insulinlike growth factors I and II in normal and hypophysectomized rats. J Clin Invest 77(6):1768–1775

    Article  CAS  PubMed  Google Scholar 

  28. Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D (2008) The diamond concept – open questions. Injury 39S2:5–8

    Article  Google Scholar 

  29. Zimmermann G, Moghaddam A, Wagner C et al (2006) Klinische Erfahrungen mit bonemorphogenetic protein 7 (BMP7) bei Pseudarthrosen langer Röhrenknochen. Unfallchirurg 109(7):528–537

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Keine Angabe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Högel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Högel, F., Militz, M., Bühren, V. et al. Perkutane Applikation von rekombinantem humanem Bone Morphogenetic Protein-7 (rhBMP-7) nach Kallusdistraktion. Unfallchirurg 114, 167–171 (2011). https://doi.org/10.1007/s00113-010-1815-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-010-1815-7

Schlüsselwörter

Keywords

Navigation