Skip to main content
Log in

Körperliches Training und zelluläre Anpassung des Muskels

Exercise and cellular adaptation of muscle

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Ausdauer bzw. Krafttraining induzieren in der Muskelzelle verschiedene Signalwege zur Proteinsynthese. Muskelfasern können die Struktur ihrer schweren Myosinketten in Abhängigkeit von Reiz und Immobilisation in beide Richtungen (I↔IIA↔IIX) anpassen. Exzentrisches Krafttraining ist effektiv und führt zur Neubildung von Sarkomeren in Längsrichtung des Muskels. Die Wirkung erfolgt über die Regeneration der zerstörten Sarkomerstruktur. Konzentrisches Krafttraining führt zur Muskelzellhypertrophie und induziert auch im hohen Alter noch die Proteinsynthese. Der durch Krafttraining aktivierte mTOR-Signalweg wird auch durch freie Aminosäuren stimuliert. Die Anpassung an Ausdauertraining läuft über den Kalzium-Calcineurin-NFATc1-Signalweg. Die Anzahl der Kalziumtransienten, erhöht durch Kontraktionsfrequenz und Trainingsdauer, ist ein wichtiger Stimulus zur Entwicklung der Fasertyp-I-Muskeln. Daher sollte Ausdauertraining durch lange Belastungen von >30 min mit hoher Bewegungsfrequenz dominiert werden. Muskuläre Aktivität, Zellstretch oder Sarkomerrisse können zur Teilung der Satellitenzellen führen. Die Satellitenzelle fusioniert mit der Muskelfaser, der neue Myonukleus wird Teil des Muskelkfasersynzitiums und fördert so die trainingsinduzierte Proteinsynthese. Neue Erkenntnisse der intrazellulären Vorgänge geben Einblick in die direkten Effekte von körperlichem Training, Immobilisation bzw. Alterung auf die Muskelplastizität und körperliche Leistungsfähigkeit.

Abstract

Resistance training and to a lesser extent endurance training are capable of enhancing protein synthesis in skeletal muscle via various signaling pathways. Additionally, the expression of muscle fiber types responds to different regimes of training stimuli and immobilization as characterized by changes in myosin heavy chain isoforms (I↔IIA↔IIX). Eccentric resistance training has been shown to be highly efficient in inducing sarcomeric protein assembly in the longitudinal orientation of muscle cells. However, concentric contractions lead to a hypertrophic response (increased fiber diameter) in muscle which can still be activated in old age. The central signaling pathway to mediate the elevation of protein synthesis in response to training is the mTOR pathway, which is also stimulated by free amino acids. Moreover, adaptation to endurance training is mediated by the calcium-calcineurin-NFATc1 pathway which is strongly activated by the calcium transients involved in the muscle contraction process. High contraction frequency and long duration of training sessions are essential for activation and maintenance of fiber type I expression as well as for induction of transformation of type II into type I fibers. Endurance training sessions should therefore be longer than 30 min and dominated by periods of high frequency contractions. A further factor in the muscular response to training includes the recruitment and integration of satellite cells into muscle fibers. Satellite cells can respond to muscular stretch, activity and injury with increased proliferation and can later be integrated into muscle fibers. Therefore, new myonuclei are available to enhance mRNA synthesis and protein expression in muscle cells. New understanding of the cellular mechanisms of signal transduction in muscle in response to training, bed rest and ageing will help to optimize training and interventions in an ageing population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Allen DL, Roy RR, Edgerton VR (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22:1350–1360

    Article  PubMed  CAS  Google Scholar 

  2. Allen DL, Linderman JK, Roy RR et al (1997) Growth hormone/IGF-I and/or resistive exercise maintains myonuclear number in hindlimb unweighted muscles. J Appl Physiol 83:1857–1861

    PubMed  CAS  Google Scholar 

  3. Allen DL, Monke SR, Talmadge RJ et al (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78:1969–1976

    PubMed  CAS  Google Scholar 

  4. Andersen JL, Gruschy-Knudsen T, Sandri C et al (1999) Bed rest increases the amount of mismatched fibers in human skeletal muscle. J Appl Physiol 86:455–460

    PubMed  CAS  Google Scholar 

  5. Andersen JL, Terzis G, Kryger A (1999) Increase in the degree of coexpression of myosin heavy chain isoforms in skeletal muscle fibers of the very old. Muscle Nerve 22:449–454

    Article  PubMed  CAS  Google Scholar 

  6. Andersen JL, Klitgaard H, Saltin B (1994) Myosin heavy chain isoforms in single fibres from M. vastus lateralis of sprinters: influence of training. Acta Physiol Scand 151:135–142

    Article  PubMed  CAS  Google Scholar 

  7. Andersen LL, Andersen JL, Magnusson SP et al (2005) Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol 99:87–94

    Article  PubMed  Google Scholar 

  8. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  PubMed  CAS  Google Scholar 

  9. Corrigan B, Kazlauskas R (2003) Medication use in athletes selected for doping control at the Sydney Olympics 2000. Clin J Sport Med 13:33–40

    Article  PubMed  Google Scholar 

  10. Eriksson A, Kadi F, Malm C, Thornell LE (2005) Skeletal muscle morphology in power-lifters with and without anabolic steroids. Histochem Cell Biol 124:167–175

    Article  PubMed  CAS  Google Scholar 

  11. Esmarck B, Andersen JL, Olsen S et al (2001) Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol 535:301–311

    Article  PubMed  CAS  Google Scholar 

  12. Green HJ, Burnett ME, D’Arsigny C et al (2009) Muscle fiber type characteristics in females with chronic obstructive pulmonary disease. A preliminary study. J Mol Histol 2009, Feb 11. [Epub ahead of print]

  13. Holm L, Reitelseder S, Pedersen TG et al (2008) Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol 105:1454–1461

    Article  PubMed  CAS  Google Scholar 

  14. Kadi F, Charifi N, Henriksson J (2006) The number of satellite cells in slow and fast fibres from human vastus lateralis muscle. Histochem Cell Biol 126:83–87

    Article  PubMed  CAS  Google Scholar 

  15. Kadi F, Schjerling P, Andersen LL et al (2004) The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J Physiol 558:1005–1012

    Article  PubMed  CAS  Google Scholar 

  16. Kadi F, Eriksson A, Holmner S et al (1999) Cellular adaptation of the trapezius muscle in strength-trained athletes. Histochem Cell Biol 111:189–195

    Article  PubMed  CAS  Google Scholar 

  17. Kadi F, Eriksson A, Holmner S, Thornell LE (1999) Effects of anabolic steroids on the muscle cells of strength-trained athletes. Med Sci Sports Exerc 31:1528–1534

    Article  PubMed  CAS  Google Scholar 

  18. Kryger AI, Andersen JL (2007) Resistance training in the oldest old: consequences for muscle strength, fiber types, fiber size and MHC isoforms. Scand J Med Sci Sports 17:422–430

    PubMed  CAS  Google Scholar 

  19. Kubis HP, Hanke N, Scheibe RJ et al (2003) Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am J Physiol Cell Physiol 285:C56–C63

    PubMed  CAS  Google Scholar 

  20. Kubis HP, Scheibe RJ, Meissner JD et al (2002) Fast-to-slow transformation and nuclear import/export kinetics of the transcription factor NFATc1 during electrostimulation of rabbit muscle cells in culture. J Physiol 541:835–847

    Article  PubMed  CAS  Google Scholar 

  21. Kyrolainen H, Kivela R, Koskinen S et al (2003) Interrelationships between muscle structure, muscle strength and running economy. Med Sci Sports Exerc 35:45–49

    Article  PubMed  Google Scholar 

  22. Langberg H, Boushel R, Skovgaard D et al (2003) Cyclo-oxygenase-2 mediated prostaglandin release regulates blood flow in connective tissue during mechanical loading in humans. J Physiol 551:683–689

    Article  PubMed  CAS  Google Scholar 

  23. Mackey AL, Esmarck B, Kadi F et al (2007) Enhanced satellite cell proliferation with resistance training in elderly men and women. Scand J Med Sci Sports 17:34–42

    Article  PubMed  CAS  Google Scholar 

  24. Mackey AL, Kjaer M, Dandanell S et al (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol 103:425–431

    Article  PubMed  CAS  Google Scholar 

  25. Meissner JD, Gros G, Scheibe RJ et al (2001) Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture. J Physiol 533:215–226

    Article  PubMed  CAS  Google Scholar 

  26. Molsted S, Eidemak I, Sorensen HT et al (2007) Myosin heavy-chain isoform distribution, fibre-type composition and fibre size in skeletal muscle of patients on haemodialysis. Scand J Urol Nephrol 41:539–545

    Article  PubMed  CAS  Google Scholar 

  27. Otis JS, Burkholder TJ, Pavlath GK (2005) Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp Cell Res 310:417–425

    Article  PubMed  CAS  Google Scholar 

  28. Pierce GL, Magyari PM, Aranda JM Jr et al (2007) Effect of heart transplantation on skeletal muscle metabolic enzyme reserve and fiber type in end-stage heart failure patients. Clin Transplant 21:94–100

    Article  PubMed  Google Scholar 

  29. Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66:799–828

    Article  PubMed  CAS  Google Scholar 

  30. Rosenblatt JD, Yong D, Parry DJ (1994) Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17:608–613

    Article  PubMed  CAS  Google Scholar 

  31. Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175:84–94

    Article  PubMed  CAS  Google Scholar 

  32. Suetta C, Andersen JL, Dalgas U et al (2008) Resistance training induces qualitative changes in muscle morphology, muscle architecture and muscle function in elderly postoperative patients. J Appl Physiol 105:180–186

    Article  PubMed  Google Scholar 

  33. Tarnopolsky MA, Atkinson SA, MacDougall JD et al (1992) Evaluation of protein requirements for trained strength athletes. J Appl Physiol 73:1986–1995

    PubMed  CAS  Google Scholar 

  34. Tipton CM, Sawka MN, Terjung RL, Tate CA (2006) ACSM’s advanced exercise physiology. Lippincott, Williams & Wilkins, Baltimore

  35. Tipton KD, Elliott TA, Cree MG et al (2004) Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc 36:2073–2081

    Article  PubMed  CAS  Google Scholar 

  36. Toigo M, Boutellier U (2006) New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 97:643–663

    Article  PubMed  Google Scholar 

  37. Verney J, Kadi F, Charifi N et al (2008) Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle Nerve 38:1147–1154

    Article  PubMed  Google Scholar 

  38. Yu JG, Furst DO, Thornell LE (2003) The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions. Histochem Cell Biol 119:383–393

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Wir danken Yu et al. für die Erlaubnis zur Darstellung seiner Originalabbildungen und Herrn N. Gütt, Herrn P. Mateo und Herrn M. Kück für ihre Unterstützung bei der Manuskripterstellung.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Tegtbur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tegtbur, U., Busse, M. & Kubis, H. Körperliches Training und zelluläre Anpassung des Muskels. Unfallchirurg 112, 365–372 (2009). https://doi.org/10.1007/s00113-009-1627-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-009-1627-9

Schlüsselwörter

Keywords

Navigation