Skip to main content
Log in

Die Bedeutung der Zytokine in der posttraumatischen Entzündungsreaktion

The importance of cytokines in the posttraumatic inflammatory reaction

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Veränderungen der Immunantwort nach Polytrauma, posttraumatischer Sepsis und operativen Eingriffen stellen eine physiologische Reaktion des Organismus zur Aufrechterhaltung der Homöostase dar. Das Ausmaß dieser immunologischen Reaktionen korreliert dabei mit der Schwere des Gewebeschadens sowie dem Ausmaß der Hämorrhagie und Ischämie. Zytokine werden als integraler Bestandteil der Immunantwort angesehen.

Die lokale Freisetzung von pro- und antiinflammatorischen Zytokinen nach Polytrauma kann systemische Organreaktionen beeinflussen und damit den klinischen Verlauf maßgeblich beeinträchtigen. Bei einem Überwiegen der proinflammatorischen Zytokine kommt es zu einer systemischen Entzündungsreaktion („systemic inflammatory response syndrome“, SIRS), wohingegen eine Überproduktion antiinflammatorischer Mediatoren in einer Immunsuppression mit einem erhöhten Risiko infektiologischer Komplikationen resultieren kann. Sowohl das SIRS als auch die Immunsuppression scheinen bei der Entwicklung eines „Multiorgandysfunktionssyndroms“ (MODS) eine signifikante Rolle zu spielen.

Tumornekrosefaktor-α (TNF-α), Interleukin–1β (IL-1β), Interleukin-6 (IL-6) and Interleukin-8 (IL-8) stellen die wesentlichen proinflammatorischen Zytokine für den posttraumatischen Verlauf dar. Diese Zytokine vermitteln eine Vielzahl von teilweise auch üperlappenden und additiven Effekten. TNF-α and IL-1β sind frühe Regulatoren der Immunantwort, und beide können die Freisetzung sekundärer Zytokine, wie IL-6 und IL-8 induzieren. Interleukin-10 (IL-10) ist ein antiinflammatorisches Zytokin, das die Synthese proinflammatorischer Mediatoren reduziert. Andere wichtige antiinflammatorische Mediatoren sind lösliche TNF-Rezeptoren (TNF-RI und -RII) und der IL-1-Rezeptorantagonist (IL-1ra), die mit den Wirkungen des TNF-α and IL-1β interferieren.

Die frühe Einschätzung der Prognose und des klinischen Zustands der polytraumatisierten Patienten stellt sich als äußerst schwierig dar. In einer Vielzahl von Studien sind daher Zytokinkonzentrationen im posttraumatischen Verlauf bestimmt worden, um prognostische Marker für das Outcome der Patienten zu identifizieren. Des Weiteren wurden ebenso systemische Zytokinspiegel bestimmt, um den günstigsten Zeitpunkt für den chirurgischen Eingriff nach einem Polytrauma festzulegen und das Ausmaß des Eingriffs zu quantifizieren. Das Ziel dieser Arbeit ist es, den aktuellen Wissensstand bezüglich der Assoziation zwischen posttraumatischen Zytokinsynthese und der Entwicklung von Komplikationen zusammenzufassen. Ein verbessertes Verständnis dieser Mechanismen könnte zur Erstellung neuer diagnostischer und therapeutischer Behandlungsstrategien im klinischen Alltag beitragen.

Abstract

Alterations in the immune response after multiple trauma, posttraumatic sepsis and surgery are recognized as physiological reactions of the organism to restore homeostasis. The level of these immunological changes correlates with the degree of tissue damage as well as with the severity of haemorrhage and ischaemia. Cytokines are known to be integral components of this immune response.

The local release of pro- and antiinflammatory cytokines after severe trauma indicates their potential to induce systemic immunological alterations. It appears that the balance or imbalance of these different cytokines partly controls the clinical course in these patients. Overproduction of either proinflammatory cytokines or antiinflammatory mediators may result in organ dysfunction. Whereas predominance of the proinflammatory response leads to the systemic inflammatory response syndrome (SIRS), the antiinflammatory reaction may result in immune suppression with an enhanced risk of infectious complications. Systemic inflammation, as well as immune suppression, are thought to play a decisive role in the development of multiple organ dysfunction syndrome (MODS).

The major proinflammatory cytokines involved in the response to trauma and surgery include tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and IL-8. These cytokines, which are predominantly produced by monocytes and macrophages, mediate a variety of frequently overlapping effects, and their actions can be additive. TNF-α and IL-1β are early regulators of the immune response and both induce the release of secondary cytokines, such as IL-6 and IL-8. IL-10 is an antiinflammatory cytokine which reduces the synthesis of proinflammatory mediators. Other important antiinflammatory mediators are soluble TNF receptors and the IL-1 receptor antagonist, which interfere with the effects of TNF-α and IL-1β.

Early evaluation of the prognosis of polytraumatized patients and assessment of their clinical status is known to be difficult. Therefore, in several clinical studies, cytokine levels during the posttraumatic course have been determined with the aim of finding predictive markers of patient outcome. The purpose of this review was to highlight our current knowledge on the interaction of posttraumatic immune reactivity and the development of complications. A better understanding of these mechanisms might lead to the introduction of preventive and therapeutic strategies into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Angele MK, Faist E (2002) Clinical review: immunodepression in the surgical patient and increased susceptibility to infection. Crit Care Med 6: 298–305

    Article  Google Scholar 

  2. Angele MK, Xu YX, Ayala A et al. (1999) Gender dimorphism in trauma-hemorrhage-induced thymocyte apoptosis. Shock 12: 316–322

    Article  PubMed  CAS  Google Scholar 

  3. Baigrie RJ, Lamont PM, Kwiatkowski D, Dallman MJ, Morris PJ (1992) Systemic cytokine response after major surgery. Br J Surg 79: 757–760

    Article  PubMed  CAS  Google Scholar 

  4. Bhatia M, Moochhala S (2004) Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. Am J Pathol 202: 145–156

    Article  CAS  Google Scholar 

  5. Bocci V (1991) Interleukins. Clinical pharmacokinetics and practical implications. Clin Pharmacokinet 21: 274–284

    Article  PubMed  CAS  Google Scholar 

  6. Bown MJ, Horsburgh T, Nicholson ML, Bell PR, Sayers RD (2004) Cytokines, their genetic polymorphisms and outcome after abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 28: 274–280

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Brauner JS, Rohde LE, Clausell R (2000) Circulating endothelin-1 and tumor necrosis factor-α: early predictor of mortality in patients with septic shock. Intensive Care Med 26: 305–313

    Article  PubMed  CAS  Google Scholar 

  8. Brett J, Gerlach H, Nawroth PO, Steinberg S, Godman G, Stern D (1989) Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. J Exp Med 169: 1977–1991

    Article  PubMed  CAS  Google Scholar 

  9. Brune IB, Wilke W, Hensler T, Holzmann B, Siewert JR (1999) Downregulation of T helper type 1 immune response and altered pro-inflammatory and anti-inflammatory T cell cytokine balance following conventional but not laparoscopic surgery. Am J Surg 177: 55–60

    Article  PubMed  CAS  ADS  Google Scholar 

  10. Charpentier C, Audibert G, Dousset B et al. (1997) Is endotoxin and cytokine release related to a decrease in gastric intramucosal pH after hemorrhagic shock? Intensive Care Med 23: 1040–1048

    Article  PubMed  CAS  Google Scholar 

  11. Cruickshank AM, Fraser WD, Burns HJ, van Damme J, Shenkin A (1990) Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clin Sci 79: 161–165

    PubMed  CAS  Google Scholar 

  12. Desborough JP (2000) The stress response to trauma and surgery. Br J Anaesth 85: 109–117

    Article  PubMed  CAS  Google Scholar 

  13. Dinarello CA (1994) The interleukin-1 family: 10 years of discovery. FASEB J 8(15): 1314–1325

    PubMed  CAS  Google Scholar 

  14. Dinarello CA (2000) Proinflammatory cytokines. Chest 118: 503–508

    Article  PubMed  CAS  Google Scholar 

  15. Durham RM, Moran JJ, Mazuski JE, Shapiro MJ, Baue AE, Flint LM (2003) Multiple organ failure in trauma patients. J Trauma 139: 608–616

    Article  Google Scholar 

  16. Ertel W, Keel M, Keel M et al. (1995) Release of anti-inflammatory mediators after mechanical trauma correlates with severity of injury and clinical outcome. J Trauma 39: 879–887

    Article  PubMed  CAS  Google Scholar 

  17. Faist E, Kim C (1998) Therapeutic immunomodulatory approaches for the control of systemic inflammatory response syndrome and the prevention of sepsis. New Horiz 6 [2 Suppl]: 97–102

    Google Scholar 

  18. Faist E, Wichmann MW (1997) Immunology in the severely injured. Chirurg 68: 1066–1070

    Article  PubMed  CAS  Google Scholar 

  19. Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor inhibits cytokine production by Th1 clones. J Exp Med 170: 2081–2095

    Article  PubMed  CAS  Google Scholar 

  20. Flohe S, Lendemans S, Schade FU, Kreuzfelder E, Waydhas C (2004) Influence of surgical intervention in the immune response of severely injured patients. Intensive Care Med 30: 96–102

    Article  PubMed  Google Scholar 

  21. Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Bruckner U (2000) Is interleukin-6 an early marker of injury severity following major trauma in humans. Arch Surg 135: 291–295

    Article  PubMed  CAS  Google Scholar 

  22. Geldner G, Schwarz U (2003) Preclinical care of polytrauma: rush or stay. Anasthesiol Intensivmed Notfallmed Schmerzther 38: 196–197

    Article  PubMed  CAS  Google Scholar 

  23. Glaser F, Sannwald GA, Buhr HJ et al. (1995) General stress response to conventional and laparoscopic cholecystectomy. Ann Surg 221: 372–380

    Article  PubMed  CAS  Google Scholar 

  24. Gogos CA, Drosou E, Bassaris HP, Skoutelis A (2000) Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis 181: 176–180

    Article  PubMed  CAS  Google Scholar 

  25. Goldie AS, Fearon KC, Ross JA et al. (1995) Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. The Sepsis Intervention Group. JAMA 274: 172–177

    Article  PubMed  CAS  Google Scholar 

  26. Goodman ER, Kleinstein E, Fusco AM et al. (1998) Role of interleukin 8 in the genesis of acute respiratory distress syndrome through an effect on neutrophil apoptosis. Arch Surg 133: 1234–1239

    Article  PubMed  CAS  Google Scholar 

  27. Goodman RB, Pugin J, Lee JS, Matthay MA (2003) Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 14: 523–535

    Article  PubMed  CAS  Google Scholar 

  28. Hack GE, De Groot ER, Felt-Bersma RJ (1989) Increased levels of interleukin-6 in sepsis. Blood 74: 1704–1710

    PubMed  CAS  Google Scholar 

  29. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374: 1–20

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  30. Helmy SA, Wahby MA, El-Nawaway M (1999) The effect of anaesthesia and surgery on plasma cytokine production. Anaesthesia 54: 733–738

    Article  PubMed  CAS  Google Scholar 

  31. Hensler T, Hecker H, Heeg K et al. (1997) Distinct mechanism of immunosuppression as a consequence of major surgery. Infect Immunol 65: 2283–2291

    CAS  Google Scholar 

  32. Hensler T, Heinemann B, Sauerland S et al. (2003) Immunologic alterations associated with high blood transfusion volume after multiple injury: effects on plasmatic cytokine and cytokine receptor concentrations. Shock 20: 497–502

    Article  PubMed  Google Scholar 

  33. Hoch RC, Rodriguez R, Manning T et al. (1993) Effects of accidental trauma on cytokine and endotoxin production. Crit Care Med 21: 839–845

    Article  PubMed  CAS  Google Scholar 

  34. Keel M, Ecknauer E, Stocker R et al. (1996) Different pattern of local and systemic release of proinflammatory and anti-inflammatory mediators in severely injured patients with chest trauma. J Trauma 40: 907–912

    Article  PubMed  CAS  Google Scholar 

  35. Keller ET, Wanagat J, Ershler WB (1996) Molecular and cellular biology of interleukin-6 and its receptor. Front Biosci 1: d340–d357

    PubMed  CAS  Google Scholar 

  36. Koperna T, Vogl SE, Poschl GP, Hamilton G, Roder G, Germann P (1998) Cytokine patterns in patients who undergo hemofiltration for treatment of multiple organ failure. World J Surg 22: 443–447

    Article  PubMed  CAS  Google Scholar 

  37. Kriegler M, Perez C, Defay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53: 45–53

    Article  PubMed  CAS  Google Scholar 

  38. Krohn CD, Reikeras O, Mollnes TE, Aasen AO (1998) Complement activation and release of interleukin-6 and tumor necrosis factor-alpha drained and systemic blood after major orthopaedic surgery. Eur J Surg 164: 103–108

    Article  PubMed  CAS  Google Scholar 

  39. Law MM, Cryer HG, Abraham E (1994) Elevated levels of soluble ICAM-1 correlate with the development of multiple organ failure in severly injured patients. J Trauma 37: 100–106

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  40. Lee J, Vilcek J (1989) Interleukin-6: A multifunctional cytokine regulating immune reactions and the acute phase protein response. Lab Invest 61: 588–593

    Google Scholar 

  41. Lendemans S, Kreuzfelder E, Waydhas C, Nast-Kolb D, Flohe S (2004) Verlauf und prognostische Bedeutung immunologischer Funktionsparameter nach schwerem Trauma. Unfallchirurg 107: 203–210

    Article  PubMed  CAS  Google Scholar 

  42. Leon LR (2002) Cytokine regulation of fever: studies using gene knockout mice. J Appl Physiol 92: 2648–2655

    PubMed  CAS  ADS  Google Scholar 

  43. Liener UC, Brückner UB, Knöferl MW, Steinbach G, Kinzl L, Gebhard F (2002) Chemokine activation within 24 hours after blunt accident trauma. Shock 17: 169–172

    Article  PubMed  Google Scholar 

  44. Lin E, Calvano SE, Lowry SF (2000) Inflammatory cytokines and cell response in surgery. Surgery 127: 117–126

    Article  PubMed  CAS  Google Scholar 

  45. Loisa P, Rinne T, Laine S, Hurme M, Kaukinen S (2003) Anti-inflammatory cytokine response and the development of multiple organ failure in severe sepsis. Acta Anaesthesiol Scand 47: 319–325

    Article  PubMed  CAS  Google Scholar 

  46. Lyons A, Goebel A, Mannick JA, Lederer JA (1999) Protective effects of early interleukin 10 antagonism on injury-induced immune dysfunction. Arch Surg 134: 1317–1323

    Article  PubMed  CAS  Google Scholar 

  47. Marchant A, Deviere J, Byl B, de Groote D, Vincent JL, Goldman M (1994): Interleukin-10 production during septicaemia. Lancet 343: 707–708

    Article  PubMed  CAS  Google Scholar 

  48. Martin C, Boisson C, Haccooun M, Thomachot L, Mege JL (1997) Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock and severe trauma. Crit Care Med 25: 1813–1819

    Article  PubMed  CAS  Google Scholar 

  49. Martins GA, da Gloria da Cost Carvalho M, Rocha Gattass C (2003) Sepsis: a follow-up of cytokine production in different phases of septic patients. Int J Mol Med 11: 585–591

    PubMed  CAS  Google Scholar 

  50. Meduri GU, Headley S, Kohler G et al. (1995) Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 107: 1062–1073

    Article  PubMed  CAS  Google Scholar 

  51. Meduri GU, Kohler G, Headley S, Tolley E, Stentz F, Postleithwaite A (1995) Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 108: 1303–1314

    Article  PubMed  CAS  Google Scholar 

  52. Menger MD, Vollmar B (2004) Surgical trauma: hyperinflammation versus immunosuppression? Langenbecks Arch Surg 389: 475–484

    Article  PubMed  Google Scholar 

  53. Miller-Graziano CL, De AK, Kodys K (1995) Altered IL-10 levels in trauma patients monocytes and T-lymphocytes. J Clin Immunol 15: 94–104

    Article  Google Scholar 

  54. Miyaoka K, Iwase M, Suzuki R et al. (2005) Clinical evaluation of circulating interleukin-6 and interleukin-10 levels after surgery-induced inflammation. J Surg Res 125: 144–150

    Article  PubMed  CAS  Google Scholar 

  55. Mokart D, Guery BP, Bouabdallah R et al. (2003) Deactivation of alveolar macrophages in septic neutropenic ARDS. Chest 124: 644–652

    Article  PubMed  Google Scholar 

  56. Mokart D, Capo C, Blache JL et al. (2002) Early postoperative compensatory anti-inflammatory response syndrome is associated with septic complications after major surgical trauma in patients with cancer. Br J Surgery 89: 1450–1456

    Article  CAS  Google Scholar 

  57. Mokart D, Merlin M, Sannini A et al. (2005) Procalcitonin, interleukin-6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. Br J Anaesth 94: 767–783

    Article  PubMed  CAS  Google Scholar 

  58. Mukaida N (2003) Pathophysiolroles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 284: 566–577

    Google Scholar 

  59. Naldini A, Borrelli E, Carraro F, Giomarelli P, Toscano M (1998) Interleukin-10 production in patients undergoing cardiopulmonary surgery. Cytokine 18: 74–79

    Google Scholar 

  60. Nast-Kolb D, Aufmkolk M, Rucholtz S, Obertacke U, Waydhas C (2001) Multiple organ failure still a major cause of morbidity but not mortality in blunt multiple trauma. J Trauma 51: 835–841

    Article  PubMed  CAS  Google Scholar 

  61. Nast-Kolb D, Waydhas C, Gippner-Steppert C et al. (1997) Indicators of the posttraumatic inflammatory response correlate with organ failure in patients with multiple injuries. J Trauma 42: 446–454

    Article  PubMed  CAS  Google Scholar 

  62. Nawroth PO, Bank I, Handley D, Cassimeris J, Chess L, Stern DM (1989) Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin-1. J Exp Med 163: 1363–1375

    Article  Google Scholar 

  63. Neidhardt R, Keel M, Steckholzer U et al. (1997) Relationship of interleukin-10 plasma levels to severity of injury and clinical outcome in injured patients. J Trauma 42: 863–870

    Article  PubMed  CAS  Google Scholar 

  64. Nicholson G, Woodfine J, Bryant AE et al. (2005) The hormonal and inflammatory responses to pelvic reconstructive surgery following major trauma. Injury 36: 303–309

    Article  PubMed  CAS  Google Scholar 

  65. Norwood MG, Bown MJ, Sutton AJ, Nicholson ML, Sayers RD (2004) Interleukin-6 production during abdominal aortic aneurysm repair arises from gastrointestinal tract and not the legs. Br J Surg 91: 1153–1156

    Article  PubMed  CAS  Google Scholar 

  66. Oberholzer A, Souza SM, Tschoeke SK et al. (2005) Plasma cytokine measurements augment prognostic scores as indicators of outcome in patients with severe sepsis. Shock 23: 488–493

    PubMed  CAS  Google Scholar 

  67. Okusawa S, Yancey KB, van der Meer JW et al. (1988) C5a stimulates secretion of tumor necrosis factor from human mononuclear cells in vitro. Comparison with secretion of interleukin 1b and interleukin 1a. J Exp Med 168: 443–448

    Article  PubMed  CAS  Google Scholar 

  68. O’Nuallain EM, Puri P, Mealy K, Reen DJ (1995) Induction of IL-1 receptor antagonist (IL-1ra) following surgery is associated with major trauma. Clin Immunol Immunopathol 76: 96–101

    Article  PubMed  CAS  Google Scholar 

  69. Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117: 1162–1172

    Article  PubMed  CAS  Google Scholar 

  70. Pallister I, Empson K (2005) The effects of surgical fracture fixation on the systemic inflammatory response to major trauma. J Am Acad Orthop Surg 13: 93–100

    PubMed  Google Scholar 

  71. Pape HC, Grimme K, van Griensven M et al. (2003) Impact of intramedullary instrumentation versus damage control for femoral fractures on immunoinflammatory parameters: prospective randomized analysis by the EPOFF study group. J Trauma 55: 7–13

    Article  PubMed  Google Scholar 

  72. Pape HC, Schmidt RE, Rice J et al. (2000) Biochemical changes after trauma and skeletal surgery of the lower extremity: quantification of the operative burden. Crit Care Med 28: 3441–3448

    Article  PubMed  CAS  Google Scholar 

  73. Pape HC, van Griensven M, Rice J et al. (2001) Major secondary surgery in blunt trauma patients and perioperative cytokine liberation: determination of the clinical relevance of biochemical markers. J Trauma 50: 989–1000

    Article  PubMed  CAS  Google Scholar 

  74. Parsons PE, Eisner MD, Thompson BT et al. (2005) Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med 33: 1–6

    Article  PubMed  CAS  Google Scholar 

  75. Partrick DA, Moore EE, Moore FA, Biffl WL, Barnett CC Jr (1999) Release of anti-inflammatory mediators after major torso trauma correlates with the development of postinjury multiple organ failure. Am J Surg 178: 564–569

    Article  PubMed  CAS  Google Scholar 

  76. Peschon JJ, Torrance DS, Stocking KL et al. (1998) TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol 160: 943–952

    PubMed  CAS  Google Scholar 

  77. Pilz G, Fraunberger P, Appel R et al. (1996) Early prediction of outcome in score-identified, postcardiac surgical patients at high risk for sepsis, using soluble tumor necrosis factor receptor-p55 concentrations. Crit Care Med 24: 596–600

    Article  PubMed  CAS  Google Scholar 

  78. Poeze M, Ramsay G, Buurman WA, Greve JW, Dentener M, Takala J (2002) Increased hepatosplanchnic inflammation precedes the development of organ dysfunction after elective high-risk surgery. Shock 17: 451–458

    Article  PubMed  Google Scholar 

  79. Redl H, Schlag G, Kneidinger K, Dinges H, Davies J (1993) Activation/adherence phenomena of leukocytes and endothelial cells in trauma and sepsis. In: Schlag G, Redl H (eds) Pathophysiology of shock, sepsis and organ failure. Springer, Berlin Heidelberg New York Tokio, p 549

  80. Regel G, Grotz M, Weltner T, Sturm JA, Tscherne H (1996) Pattern of organ failure following severe trauma. World J Surg 20: 422–429

    Article  PubMed  CAS  Google Scholar 

  81. Remick DG, Bolgos G, Copeland S, Siddiqui J (2005) Role of interleukin-6 in mortality from physiologic response to sepsis. Infect Immun 73: 2751–2757

    Article  PubMed  CAS  Google Scholar 

  82. Rensing H, Bauer M (2001) Multiple organ failure. Mechanisms, clinical manifestations and treatment strategies. Anaesthesist 50: 819–841

    Article  PubMed  CAS  Google Scholar 

  83. Rezende-Neto JB, Moore EE, Melo de Andrade MY et al. (2002) Systemic inflammatory response secondary to abdominal compartment syndrome: stage for multiple organ failure. J Trauma 53: 1121–1128

    Article  PubMed  Google Scholar 

  84. Ribeiro CA, Andrade C, Polanczyk CA, Clausell N (2002) Association between early detection of soluble TNF receptors and mortality in burn patients. Intensive Care Med 28: 472–478

    Article  PubMed  CAS  Google Scholar 

  85. Riche FC, Cholley BP, Panis YH (2000) Inflammatory cytokine response in patiens with septic shock secondary to generalised peritonitis. Crit Care Med 28: 433–437

    Article  PubMed  CAS  Google Scholar 

  86. Roumen RM, Hendricks T, van der Ven-Jongekrijg J et al. (1993) Cytokine patterns in patients after major vascular surgery, hemorrhagic shock and severe blunt trauma. Ann Surg 218: 769–776

    Article  PubMed  CAS  Google Scholar 

  87. Sauaia A, Moore FA, Moore EE, Lezotte DC (1996) Early risk factors for postinjury multiple organ failure. Worls J Surg 20: 392–400

    Article  CAS  Google Scholar 

  88. Sauaia A, Moore FA, Moore EE, Norris JM, Lezotte DC, Hamman RF (1998) Multiple organ failure can be predicted as early as 12 hours after injury. J Trauma 45: 291–303

    Article  PubMed  CAS  Google Scholar 

  89. Seekamp A, Jochum M, Ziegler M, van Griensven M, Michael M, Regel G (1998) Cytokines and adhesion molecules in elective and accidental trauma-related ischemia/reperfusion. J Trauma 44: 874–882

    Article  PubMed  CAS  Google Scholar 

  90. Shalaby MR, Waage A, Aarden L, Espevik T (1989) Endotoxin, tumor necrosis factor-α/cachectin and interleukin 1 induce interleukin 6 production in vivo. Clin Immunol Immunopathol 53: 488–498

    Article  PubMed  CAS  Google Scholar 

  91. Shalaby MR, Waage A, Espevik T (1989) Cytokine regulation of interleukin 6 production by human endothelial cells. Cell Immunol 121: 372–382

    Article  PubMed  CAS  Google Scholar 

  92. Shenkin A, Fraser WD, Series J et al. (1989) The serum Interleukin-6 response to elective surgery. Lymphokine Res 8: 123–127

    PubMed  CAS  Google Scholar 

  93. Smail N, Messiah A, Edouard A et al. (1995) Role of systemic inflammatory response syndrome and infection in the occurrence of early multiple organ dysfunction syndrome following severe trauma. Intensive Care Med 21: 813–816

    Article  PubMed  CAS  Google Scholar 

  94. Smith RM, Giannoudis PV, Bellamy MC et al. (2000) Interleukin-10 release and monocyte human leukocyte antigen-DR expression during femoral nailing. Clin Orthop 373: 233–240

    Article  PubMed  Google Scholar 

  95. Song GY, Chung CS, Chaudry IH, Ayala A (1999) What is the role of interleukin 10 in polymicrobial sepsis: anti-inflammatory agent or immunosuppressant? Surgery 126: 378–383

    Article  PubMed  CAS  Google Scholar 

  96. Spielmann S, Kerner T, Ahlers D, Keh D, Gerlach M, Gerlach H (2001) Early detection of increased tumor necrosis factor alpha (TNF-α) and soluble TNF receptor protein plasma levels after trauma reveals associations with the clinical course. Acta Anaesthesiol Scand 45: 364–370

    Article  PubMed  CAS  Google Scholar 

  97. Steinhauser ML, Hogaboam CM, Kunkel SL, Lukacs NW, Strieter R, Standiford TJ (1999): IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J Immunol 162: 392–399

    PubMed  CAS  Google Scholar 

  98. Svoboda P, Kantorova I, Ochmann J (1994) Dynamics of interleukin 1, 2, and 6 and tumor necrosis factor alpha in multiple trauma patients. J Trauma 36: 336–340

    Article  PubMed  CAS  Google Scholar 

  99. Tabardel Y, Duchateau J, Schmartz D et al. (1996) Corticosteroids increase blood interleukin-10 levels during cardiopulmonary bypass in men. Surgery 119: 76–80

    Article  PubMed  CAS  Google Scholar 

  100. Taniguchi T, Koido Y, Aiboshi J, Yamashita T, Suzaki S, Kurokawa A (1999) The ratio of interleukin-6 to interleukin-10 correlates with severity in patients with chest and abdominal trauma. Am J Emerg Med 17: 548–551

    Article  PubMed  CAS  Google Scholar 

  101. Taniguchi T, Koido Y, Aiboshi J, Yamashita T, Suzaki S, Kurokawa A (1999) Change in the ratio of interleukin-6 to interleukin-10 predicts a poor outcome in patients with systemic inflammatory response syndrome. Crit Care Med 27: 1262–1264

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  102. Tracey KJ, Cerami A (1993) Tumor necrosis factor: an updated review of its biology. Crit Care Med 21: S415–S422

    Article  PubMed  CAS  Google Scholar 

  103. van der Poll T, Jansen J, Levi M, Ten Cate H, Ten Cate JW, van Deventer SJ (1994) Regulation of interleukin 10 release by tumor necrosis factor in humans and chimpanzees. J Exp Med 180: 1985–1988

    Article  PubMed  CAS  Google Scholar 

  104. van Griensven M, Stalp M, Seekamp A (1999) Ischemia-reperfusion directly increases pulmonary permeability in vitro. Shock 11: 259–263

    Article  PubMed  CAS  Google Scholar 

  105. Vindenes HA, Ulvestad E, Bjerknes R (1998) Concentrations of cytokines in plasma of patients with large burns: their relation to time after injury, burn size, inflammatory variables, infection, and outcome. Eur J Surg 164: 647–456

    Article  PubMed  CAS  Google Scholar 

  106. Wakefield CH, Barclay GR, Fearon KC et al. (1998) Proinflammatory mediator activity, endogenous antagonists and the systemic inflammatory response in intra-abdominal sepsis. Scottish Sepsis Intervention Group. Br J Surg. 85: 818–825

    Google Scholar 

  107. Watanabe E, Hirasawa H, Oda S, Matsuda K, Hatano M, Tokushia T (2005) Extremely high interleukin-6 blood levels and outcome in critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphism. Crit Care Med 33: 89–97

    Article  PubMed  CAS  Google Scholar 

  108. Waydhas C, Nast-Kolb D, Kick M et al. (1995) Postoperative homeostatic imbalance after trauma surgical interventions of various degrees in polytrauma. Unfallchirurg 98: 455–463

    PubMed  CAS  Google Scholar 

  109. Waydhas C, Nast-Kolb D, Trupka A et al. (1996) Posttraumatic inflammatory response, secondary operations and late multiple organ failure. J Trauma 40: 624–631

    Article  PubMed  CAS  Google Scholar 

  110. Wewers MD (2004) IL-1β: an endosomal exit. Proc Natl Acad Sci USA 101: 10241–10242

    Article  PubMed  CAS  ADS  Google Scholar 

  111. Wick M, Ekkernkamp A, Muhr G (1997) The epidemiology of multiple trauma. Chirurg 68: 1053–1058

    Article  PubMed  CAS  Google Scholar 

  112. Yao YM, Redl H, Bahrami S, Schlag G (1998) The inflammatory basis of trauma/shock-associated multiple organ failure. Inflamm Res 47: 201–210

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hildebrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildebrand, F., Pape, HC. & Krettek, C. Die Bedeutung der Zytokine in der posttraumatischen Entzündungsreaktion. Unfallchirurg 108, 793–803 (2005). https://doi.org/10.1007/s00113-005-1005-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-005-1005-1

Schlüsselwörter

Keywords

Navigation