Skip to main content
Log in

Protein acetylation: a novel modus of obesity regulation

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Obesity is a chronic epidemic disease worldwide which has become one of the important public health issues. It is a process that excessive accumulation of adipose tissue caused by long-term energy intake exceeding energy expenditure. So far, the prevention and treatment strategies of obesity on individuals and population have not been successful in the long term. Acetylation is one of the most common ways of protein post-translational modification (PTM). It exists on thousands of non-histone proteins in almost every cell chamber. It has many influences on protein levels and metabolome levels, which is involved in a variety of metabolic reactions, including sugar metabolism, tricarboxylic acid cycle, and fatty acid metabolism, which are closely related to biological activities. Studies have shown that protein acetylation levels are dynamically regulated by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Protein acetylation modifies protein-protein and protein-DNA interactions and regulates the activity of enzymes or cytokines which is related to obesity in order to participate in the occurrence and treatment of obesity-related metabolic diseases. Therefore, we speculated that acetylation was likely to become effective means of controlling obesity in the future. In consequence, this review focuses on the mechanisms of protein acetylation controlled obesity, to provide theoretical basis for controlling obesity and curing obesity-related diseases, which is a significance for regulating obesity in the future. This review will focus on the role of protein acetylation in controlling obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ross KE, Huang H, Ren J, Arighi CN, Li G, Tudor CO, Lv M, Lee JY, Chen SC, Vijay-Shanker K et al (2017) iPTMnet: integrative bioinformatics for studying PTM networks. Meth Molec biol 1558:333–353

    Article  CAS  Google Scholar 

  2. Liu Y, Wang M, Xi J, Luo F, Li A (2018) PTM-ssMP: a web server for predicting different types of post-translational modification sites using novel site-specific modification profile. Int J Biol Sci 14:946–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tran DT, Cavett VJ, Dang VQ, Torres HL, Paegel BM (2016) Evolution of a mass spectrometry-grade protease with PTM-directed specificity. Proc Natl Acad Sci U S A 113:14686–14691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Torres MP, Dewhurst H, Sundararaman N (2016) Proteome-wide structural analysis of PTM hotspots reveals regulatory elements predicted to impact biological function and disease. Molec Cell Proteom 15:3513–3528

    Article  CAS  Google Scholar 

  5. Menzies KJ, Zhang H, Katsyuba E, Auwerx J (2016) Protein acetylation in metabolism - metabolites and cofactors. Nat Rev Endocrinol 12:43–60

    Article  CAS  PubMed  Google Scholar 

  6. Fukushima A, Lopaschuk GD (2016) Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure. Biochim Biophys Acta 1862:2211–2220

    Article  CAS  PubMed  Google Scholar 

  7. Verdin E, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16:258–264

    Article  CAS  PubMed  Google Scholar 

  8. Ali I, Conrad RJ, Verdin E, Ott M (2018) Lysine acetylation Goes global: from epigenetics to metabolism and therapeutics. Chem Rev 118:1216–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Narita T, Weinert BT, Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20:156–174

    Article  CAS  PubMed  Google Scholar 

  10. Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song W, Yu Y et al (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153:1012–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hofmann NR (2019) Cell Wall polymers: the importance of Deacetylation. Plant Cell 31:936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hein DW, Doll MA (2017) Rabbit N-acetyltransferase 2 genotyping method to investigate role of acetylation polymorphism on N- and O-acetylation of aromatic and heterocyclic amine carcinogens. Arch Toxicol 91:3185–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Distler JJ, Merrick JM, Roseman S (1958) Glucosamine metabolism. III. Preparation and N-acetylation of crystalline D-glucosamine- and D-galactosamine-6-phosphoric acids. J Biol Chem 230:497–509

    Article  CAS  PubMed  Google Scholar 

  14. Su C, Lu Y, Liu H (2016) N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi. Nat Commun 7:12916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Selinski S, Gerullis H, Otto T, Roth E, Volkert F, Ovsiannikov D, Salem J, Moormann O, Geis BC, Niedner H, Blaszkewicz M, Hengstler JG, Golka K (2017) Ultra-slow N-Acetyltransferase 2 is associated with recurrence-free time in bladder Cancer patients. Eur Urol 71:994–995

    Article  CAS  PubMed  Google Scholar 

  16. Zand B, Previs RA, Zacharias NM, Rupaimoole R, Mitamura T, Nagaraja AS, Guindani M, Dalton HJ, Yang L, Baddour J, Achreja A, Hu W, Pecot CV, Ivan C, Wu SY, McCullough CR, Gharpure KM, Shoshan E, Pradeep S, Mangala LS, Rodriguez-Aguayo C, Wang Y, Nick AM, Davies MA, Armaiz-Pena G, Liu J, Lutgendorf SK, Baggerly KA, Eli MB, Lopez-Berestein G, Nagrath D, Bhattacharya PK, Sood AK (2016) Role of increased n-acetylaspartate levels in cancer. J Natl Cancer Inst 108:djv426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Li P, Ge J, Li H (2019) Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol 17:96–115

    Article  PubMed  CAS  Google Scholar 

  18. Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu WG, Qin J, Honig B, Gu W (2016) Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature 538:118–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choudhary C, Kumar C, Gnad F, Nielsen M, Rehman M, Walther T, Olsen J, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (New York, NY) 325:834–840

    Article  CAS  Google Scholar 

  20. Baumann K (2015) Post-translational modifications: crotonylation versus acetylation. Nat Rev Mol Cell Biol 16:265

    Article  CAS  PubMed  Google Scholar 

  21. Yakhine-Diop SMS, Niso-Santano M, Rodriguez-Arribas M, Gomez-Sanchez R, Martinez-Chacon G, Uribe-Carretero E, Navarro-Garcia JA, Ruiz-Hurtado G, Aiastui A, Cooper JM et al (2019) Impaired Mitophagy and protein acetylation levels in fibroblasts from Parkinson's disease patients. Mol Neurobiol 56:2466–2481

    Article  CAS  PubMed  Google Scholar 

  22. Heitmuller S, Neumann-Staubitz P, Herrfurth C, Feussner I, Neumann H (2018) Cellular substrate limitations of lysine acetylation turnover by sirtuins investigated with engineered futile cycle enzymes. Metab Eng 47:453–462

    Article  PubMed  CAS  Google Scholar 

  23. Sychantha D, Brott AS, Jones CS, Clarke AJ (2018) Mechanistic pathways for peptidoglycan O-acetylation and De-O-acetylation. Front Microbiol 9:2332

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burger M, Willige BC, Chory J (2017) A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors. Nat Commun 8:2201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Berti F, De Ricco R, Rappuoli R (2018) Role of O-acetylation in the immunogenicity of bacterial polysaccharide vaccines. Molecules (Basel, Switzerland) 23. https://doi.org/10.3390/molecules23061340

  26. Hein DW, Doll MA (2017) Catalytic properties and heat stabilities of novel recombinant human N-acetyltransferase 2 allozymes support existence of genetic heterogeneity within the slow acetylator phenotype. Arch Toxicol 91:2827–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Birhanu AG, Yimer SA, Holm-Hansen C, Norheim G, Aseffa A, Abebe M, Tonjum T (2017) Nepsilon- and O-acetylation in mycobacterium tuberculosis lineage 7 and lineage 4 strains: proteins involved in bioenergetics, virulence, and antimicrobial resistance are acetylated. J Proteome Res 16:4045–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Diallo I, Seve M, Cunin V, Minassian F, Poisson JF, Michelland S, Bourgoin-Voillard S (2019) Current trends in protein acetylation analysis. Expert Rev Proteom 16:139–159

    Article  CAS  Google Scholar 

  29. Martire S, Gogate AA, Whitmill A, Tafessu A, Nguyen J, Teng YC, Tastemel M, Banaszynski LA (2019) Phosphorylation of histone H3.3 at serine 31 promotes p300 activity and enhancer acetylation. Nat Genet 51:941–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang H, Yang K, Gu H, Sun C (2020) Dynamic post-translational modifications in obesity. J Cell Mol Med 24:2384–2387

    Article  PubMed  Google Scholar 

  31. Haigney A, Ricketts MD, Marmorstein R (2015) Dissecting the molecular roles of histone chaperones in histone acetylation by type B histone Acetyltransferases (HAT-B). J Biol Chem 290:30648–30657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeo CC (2018) GNAT toxins of bacterial toxin-antitoxin systems: acetylation of charged tRNAs to inhibit translation. Mol Microbiol 108:331–335

    Article  CAS  PubMed  Google Scholar 

  33. Raisner R, Kharbanda S, Jin L, Jeng E, Chan E, Merchant M, Haverty PM, Bainer R, Cheung T, Arnott D, Flynn EM, Romero FA, Magnuson S, Gascoigne KE (2018) Enhancer activity requires CBP/P300 Bromodomain-dependent histone H3K27 acetylation. Cell Rep 24:1722–1729

    Article  CAS  PubMed  Google Scholar 

  34. Izumikawa K, Ishikawa H, Yoshikawa H, Fujiyama S, Watanabe A, Aburatani H, Tachikawa H, Hayano T, Miura Y, Isobe T, Simpson RJ, Li L, Min J, Takahashi N (2019) LYAR potentiates rRNA synthesis by recruiting BRD2/4 and the MYST-type acetyltransferase KAT7 to rDNA. Nucleic Acids Res 47:10357–10372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang C, Zhang Z, Chen L, Lee HW, Ayrapetov MK, Zhao TC, Hao Y, Gao J, Yang C, Mehta GU, Zhuang Z, Zhang X, Hu G, Chin YE (2018) Acetylation within the N- and C-terminal domains of Src regulates distinct roles of STAT3-mediated tumorigenesis. Cancer Res 78:2825–2838

    Article  CAS  PubMed  Google Scholar 

  36. Majorek KA, Osinski T, Tran DT, Revilla A, Anderson WF, Minor W, Kuhn ML (2017) Insight into the 3D structure and substrate specificity of previously uncharacterized GNAT superfamily acetyltransferases from pathogenic bacteria. Biochim Biophys Acta, Proteins Proteomics 1865:55–64

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Bao C, Wang L, Han R, Beier UH, Akimova T, Cole PA, Dent SYR, Hancock WW (2019) Complementary roles of GCN5 and PCAF in Foxp3+ T-regulatory cells. Cancers 11. https://doi.org/10.3390/cancers11040554

  38. Dutta R, Tiu B, Sakamoto KM (2016) CBP/p300 acetyltransferase activity in hematologic malignancies. Mol Genet Metab 119:37–43

    Article  CAS  PubMed  Google Scholar 

  39. Dutto I, Scalera C, Prosperi E (2018) CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Molec Life Sci : CMLS 75:1325–1338

    Article  CAS  PubMed  Google Scholar 

  40. Jin L, Garcia J, Chan E, de la Cruz C, Segal E, Merchant M, Kharbanda S, Raisner R, Haverty PM, Modrusan Z, Ly J, Choo E, Kaufman S, Beresini MH, Romero FA, Magnuson S, Gascoigne KE (2017) Therapeutic targeting of the CBP/p300 Bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Res 77:5564–5575

    Article  CAS  PubMed  Google Scholar 

  41. Ikeda T, Uno M, Honjoh S, Nishida E (2017) The MYST family histone acetyltransferase complex regulates stress resistance and longevity through transcriptional control of DAF-16/FOXO transcription factors. EMBO Rep. https://doi.org/10.15252/embr.201743907

  42. Sapountzi V, Cote J (2011) MYST-family histone acetyltransferases: beyond chromatin. Cell Molec Life Sci : CMLS 68:1147–1156

    Article  CAS  PubMed  Google Scholar 

  43. Sheikh BN, Akhtar A (2019) The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet 20:7–23

    Article  CAS  PubMed  Google Scholar 

  44. Shi X, Xu W, Dai HH, Sun Y, Wang XL (2014) The role of SRC1 and SRC2 in steroid-induced SDF1 expression in normal and ectopic endometrium. Reproduction (Cambridge, England) 147:847–853

    Article  CAS  Google Scholar 

  45. Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, Wang J, Qi R, Matzuk AJ, Song X, Madoux F, Hodder P, Chase P, Griffin PR, Zhou S, Liao L, Xu J, O'Malley BW (2014) Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res 74:1506–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Choi SE, Kwon S, Seok S, Xiao Z, Lee KW, Kang Y, Li X, Shinoda K, Kajimura S, Kemper B, Kemper JK (2017) Obesity-linked phosphorylation of SIRT1 by casein kinase 2 inhibits its nuclear localization and promotes fatty liver. Mol Cell Biol 37. https://doi.org/10.1128/mcb.00006-17

  47. Ashraf W, Bronner C, Zaayter L, Ahmad T, Richert L, Alhosin M, Ibrahim A, Hamiche A, Mely Y, Mousli M (2017) Interaction of the epigenetic integrator UHRF1 with the MYST domain of TIP60 inside the cell. J Experim Clin Cancer Res 36:188

    Article  CAS  Google Scholar 

  48. Scholz C, Weinert BT, Wagner SA, Beli P, Miyake Y, Qi J, Jensen LJ, Streicher W, McCarthy AR, Westwood NJ et al (2015) Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotechnol 33:415–423

    Article  CAS  PubMed  Google Scholar 

  49. Bradley EW, Carpio LR, van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ (2015) Histone Deacetylases in bone development and skeletal disorders. Physiol Rev 95:1359–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shen Y, Wei W, Zhou DX (2015) Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci 20:614–621

    Article  CAS  PubMed  Google Scholar 

  51. Mathys H, Penney J, Tsai LH (2018) A developmental switch in microglial HDAC function. Immunity 48:476–478

    Article  CAS  PubMed  Google Scholar 

  52. Hsu CW, Shou D, Huang R, Khuc T, Dai S, Zheng W, Klumpp-Thomas C, Xia M (2016) Identification of HDAC inhibitors using a cell-based HDAC I/II assay. J Biomol Screen 21:643–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dai H, Sinclair DA, Ellis JL, Steegborn C (2018) Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther 188:140–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hershberger KA, Martin AS, Hirschey MD (2017) Role of NAD(+) and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol 13:213–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tak WY, Ryoo BY, Lim HY, Kim DY, Okusaka T, Ikeda M, Hidaka H, Yeon JE, Mizukoshi E, Morimoto M, Lee MA, Yasui K, Kawaguchi Y, Heo J, Morita S, Kim TY, Furuse J, Katayama K, Aramaki T, Hara R, Kimura T, Nakamura O, Kudo M (2018) Phase I/II study of first-line combination therapy with sorafenib plus resminostat, an oral HDAC inhibitor, versus sorafenib monotherapy for advanced hepatocellular carcinoma in east Asian patients. Investig New Drugs 36:1072–1084

    Article  CAS  Google Scholar 

  56. Woods DM, Woan KV, Cheng F, Sodre AL, Wang D, Wu Y, Wang Z, Chen J, Powers J, Pinilla-Ibarz J et al (2017) T cells lacking HDAC11 have increased effector functions and mediate enhanced alloreactivity in a murine model. Blood 130:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee Y, Jeong GS, Kim KM, Lee W, Bae JS (2018) Cudratricusxanthone a attenuates sepsis-induced liver injury via SIRT1 signaling. J Cell Physiol 233:5441–5446

    Article  CAS  PubMed  Google Scholar 

  58. Michishita E, Horikawa I, Aprelikova O, Saito SI, Padillanash H, Sedelnikova OA, Gadisetti C, Kioi M, Ried T, Bonner WM (2005) Characterization and investigation of seven SIRT proteins in human cell aging: down-regulation of SIRT1 extends cellular lifespan. 65:663–663

  59. Mathias RA, Greco TM, Cristea IM (2016) Identification of Sirtuin4 (SIRT4) protein interactions: uncovering candidate acyl-modified mitochondrial substrates and enzymatic regulators. Methods Mol Biol 1436:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U (2018) Impaired Adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol Rev 98:1911–1941

    Article  CAS  PubMed  Google Scholar 

  61. Dodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Balland E, Merry TL, Munzberg H, Zhang ZY, Kahn BB et al (2015) Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160:88–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oguri Y, Kajimura S (2020) Cellular heterogeneity in brown adipose tissue. J Clin Invest 130:65–67

    Article  PubMed  Google Scholar 

  63. Chen Y, Ikeda K, Yoneshiro T, Scaramozza A, Tajima K, Wang Q, Kim K, Shinoda K, Sponton CH, Brown Z, Brack A, Kajimura S (2019) Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature 565:180–185

    Article  CAS  PubMed  Google Scholar 

  64. Czub MP, Zhang B, Chiarelli MP, Majorek KA, Joe L, Porebski PJ, Revilla A, Wu W, Becker DP, Minor W, Kuhn ML (2018) A Gcn5-related N-Acetyltransferase (GNAT) capable of acetylating Polymyxin B and Colistin antibiotics in vitro. Biochemistry 57:7011–7020

    Article  CAS  PubMed  Google Scholar 

  65. Lipinski M, Del Blanco B, Barco A (2019) CBP/p300 in brain development and plasticity: disentangling the KAT's cradle. Curr Opin Neurobiol 59:1–8

    Article  CAS  PubMed  Google Scholar 

  66. Yang XJ, Ullah M (2007) MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26:5408–5419

    Article  CAS  PubMed  Google Scholar 

  67. Ghobashi AH, Kamel MA (2018) Tip60: updates. J Appl Genet 59:161–168

    Article  CAS  PubMed  Google Scholar 

  68. Su J, Wang F, Cai Y, Jin J (2016) The functional analysis of histone Acetyltransferase MOF in tumorigenesis. Int J Mol Sci 17:17

    Article  Google Scholar 

  69. Lan R, Wang Q (2019) Deciphering structure, function and mechanism of lysine acetyltransferase HBO1 in protein acetylation, transcription regulation, DNA replication and its oncogenic properties in cancer. Cell Molec Life Sci 77:637–649

    Article  PubMed  CAS  Google Scholar 

  70. MacPherson L, Anokye J, Yeung MM, Lam EYN, Chan YC, Weng CF, Yeh P, Knezevic K, Butler MS, Hoegl A, Chan KL, Burr ML, Gearing LJ, Willson T, Liu J, Choi J, Yang Y, Bilardi RA, Falk H, Nguyen N, Stupple PA, Peat TS, Zhang M, de Silva M, Carrasco-Pozo C, Avery VM, Khoo PS, Dolezal O, Dennis ML, Nuttall S, Surjadi R, Newman J, Ren B, Leaver DJ, Sun Y, Baell JB, Dovey O, Vassiliou GS, Grebien F, Dawson SJ, Street IP, Monahan BJ, Burns CJ, Choudhary C, Blewitt ME, Voss AK, Thomas T, Dawson MA (2020) HBO1 is required for the maintenance of leukaemia stem cells. Nature 577:266–270

    Article  CAS  PubMed  Google Scholar 

  71. Li F, Wu R, Cui X, Zha L, Yu L, Shi H, Xue B (2016) Histone Deacetylase 1 (HDAC1) negatively regulates Thermogenic program in Brown adipocytes via coordinated regulation of histone H3 lysine 27 (H3K27) Deacetylation and methylation. J Biol Chem 291:4523–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nagarajan S, Rao SV, Sutton J, Cheeseman D, Dunn S, Papachristou EK, Prada JG, Couturier DL, Kumar S, Kishore K et al (2020) ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat Genet 52:187–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boucheron N, Tschismarov R, Goeschl L, Moser MA, Lagger S, Sakaguchi S, Winter M, Lenz F, Vitko D, Breitwieser FP et al (2014) CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol 15:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Emmett MJ, Lazar MA (2019) Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol 20:102–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Emmett MJ, Lim HW, Jager J, Richter HJ, Adlanmerini M, Peed LC, Briggs ER, Steger DJ, Ma T, Sims CA, Baur JA, Pei L, Won KJ, Seale P, Gerhart-Hines Z, Lazar MA (2017) Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature 546:544–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA, Behrendt CL, Olson EN, Hooper LV (2019) The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science (New York, NY) 365:1428–1434

    Article  CAS  Google Scholar 

  77. Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, Godio C, Cermenati G, Gualerzi A, Donetti E, Rotili D, Valente S, Guerrini U, Caruso D, Mai A, Saez E, de Fabiani E, Crestani M (2013) Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62:732–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tian Y, Wong VW, Wong GL, Yang W, Sun H, Shen J, Tong JH, Go MY, Cheung YS, Lai PB et al (2015) Histone Deacetylase HDAC8 promotes insulin resistance and beta-catenin activation in NAFLD-associated hepatocellular carcinoma. Cancer Res 75:4803–4816

    Article  CAS  PubMed  Google Scholar 

  79. Ozcan L, Ghorpade DS, Zheng Z, de Souza JC, Chen K, Bessler M, Bagloo M, Schrope B, Pestell R, Tabas I (2016) Hepatocyte DACH1 is increased in obesity via nuclear exclusion of HDAC4 and promotes hepatic insulin resistance. Cell Rep 15:2214–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jebessa ZH, Shanmukha Kumar D, Dewenter M, Lehmann LH, Xu C, Schreiter F, Siede D, Gong XM, Worst BC, Federico G et al (2019) The lipid droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4. Nature Metabol 1:1157–1167

    Article  CAS  Google Scholar 

  81. Kabra DG, Pfuhlmann K, Garcia-Caceres C, Schriever SC, Casquero Garcia V, Kebede AF, Fuente-Martin E, Trivedi C, Heppner K, Uhlenhaut NH et al (2016) Hypothalamic leptin action is mediated by histone deacetylase 5. Nat Commun 7:10782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ramos-Molina B, Sanchez-Alcoholado L, Cabrera-Mulero A, Lopez-Dominguez R, Carmona-Saez P, Garcia-Fuentes E, Moreno-Indias I, Tinahones FJ (2019) Gut microbiota composition is associated with the global DNA methylation pattern in obesity. Front Genet 10:613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Barrio-Hernandez I, Jafari A, Rigbolt KTG, Hallenborg P, Sanchez-Quiles V, Skovrind I, Akimov V, Kratchmarova I, Dengjel J, Kassem M, Blagoev B (2019) Phosphoproteomic profiling reveals a defined genetic program for osteoblastic lineage commitment of human bone marrow-derived stromal stem cells. Genome Res 30:127–137

    Article  PubMed  CAS  Google Scholar 

  84. Cutano V, Di Giorgio E, Minisini M, Picco R, Dalla E, Brancolini C (2019) HDAC7-mediated control of tumour microenvironment maintains proliferative and stemness competence of human mammary epithelial cells. Mol Oncol 13:1651–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Spracklen CN, Karaderi T, Yaghootkar H, Schurmann C, Fine RS, Kutalik Z, Preuss MH, Lu Y, Wittemans LBL, Adair LS, Allison M, Amin N, Auer PL, Bartz TM, Blüher M, Boehnke M, Borja JB, Bork-Jensen J, Broer L, Chasman DI, Chen YDI, Chirstofidou P, Demirkan A, van Duijn CM, Feitosa MF, Garcia ME, Graff M, Grallert H, Grarup N, Guo X, Haesser J, Hansen T, Harris TB, Highland HM, Hong J, Ikram MA, Ingelsson E, Jackson R, Jousilahti P, Kähönen M, Kizer JR, Kovacs P, Kriebel J, Laakso M, Lange LA, Lehtimäki T, Li J, Li-Gao R, Lind L, Luan J’, Lyytikäinen LP, MacGregor S, Mackey DA, Mahajan A, Mangino M, Männistö S, McCarthy MI, McKnight B, Medina-Gomez C, Meigs JB, Molnos S, Mook-Kanamori D, Morris AP, de Mutsert R, Nalls MA, Nedeljkovic I, North KE, Pennell CE, Pradhan AD, Province MA, Raitakari OT, Raulerson CK, Reiner AP, Ridker PM, Ripatti S, Roberston N, Rotter JI, Salomaa V, Sandoval-Zárate AA, Sitlani CM, Spector TD, Strauch K, Stumvoll M, Taylor KD, Thuesen B, Tönjes A, Uitterlinden AG, Venturini C, Walker M, Wang CA, Wang S, Wareham NJ, Willems SM, Willems van Dijk K, Wilson JG, Wu Y, Yao J, Young KL, Langenberg C, Frayling TM, Kilpeläinen TO, Lindgren CM, Loos RJF, Mohlke KL (2019) Exome-derived Adiponectin-associated variants implicate obesity and lipid biology. Am J Hum Genet 105:15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen YH, Chung CC, Liu YC, Yeh SP, Hsu JL, Hung MC, Su HL, Li LY (2016) Enhancer of Zeste homolog 2 and histone Deacetylase 9c regulate age-dependent Mesenchymal stem cell differentiation into osteoblasts and adipocytes. Stem cells (Dayton, Ohio) 34:2183–2193

    Article  CAS  Google Scholar 

  87. Chang YW, Tseng CF, Wang MY, Chang WC, Lee CC, Chen LT, Hung MC, Su JL (2019) Correction: Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene. 39:946–949

    Article  CAS  Google Scholar 

  88. Lieber AD, Beier UH, Xiao H, Wilkins BJ, Jiao J, Li XS, Schugar RC, Strauch CM, Wang Z, Brown JM, Hazen SL, Bokulich NA, Ruggles KV, Akimova T, Hancock WW, Blaser MJ (2019) Loss of HDAC6 alters gut microbiota and worsens obesity. FASEB J : Official Public Feder Am Soc Exper Biol 33:1098–1109

    Article  CAS  Google Scholar 

  89. Forcioli-Conti N, Esteve D, Bouloumie A, Dani C, Peraldi P (2016) The size of the primary cilium and acetylated tubulin are modulated during adipocyte differentiation: analysis of HDAC6 functions in these processes. Biochimie 124:112–123

    Article  CAS  PubMed  Google Scholar 

  90. Hai Y, Shinsky SA, Porter NJ, Christianson DW (2017) Histone deacetylase 10 structure and molecular function as a polyamine deacetylase. Nat Commun 8:15368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jin X, Yan Y, Wang D, Ding D, Ma T, Ye Z, Jimenez R, Wang L, Wu H, Huang H (2018) DUB3 promotes BET inhibitor resistance and Cancer progression by Deubiquitinating BRD4. Mol Cell 71:592–605.e594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li Y, Peng L, Seto E (2015) Histone Deacetylase 10 regulates the cell cycle G2/M phase transition via a novel Let-7-HMGA2-Cyclin A2 pathway. Mol Cell Biol 35:3547–3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Leslie PL, Chao YL, Tsai YH, Ghosh SK, Porrello A, Van Swearingen AED, Harrison EB, Cooley BC, Parker JS, Carey LA et al (2019) Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes. Nat Commun 10:4192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Sun L, Marin de Evsikova C, Bian K, Achille A, Telles E, Pei H, Seto E (2018) Programming and regulation of metabolic homeostasis by HDAC11. EBioMedicine 33:157–168

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bagchi RA, Ferguson BS, Stratton MS, Hu T, Cavasin MA, Sun L, Lin YH, Liu D, Londono P, Song K, Pino MF, Sparks LM, Smith SR, Scherer PE, Collins S, Seto E, McKinsey TA (2018) HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI insight 3. https://doi.org/10.1172/jci.insight.120159

  96. Ryall JG, Dell'Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M et al (2015) The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16:171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gallardo-Montejano VI, Saxena G, Kusminski CM, Yang C, McAfee JL, Hahner L, Hoch K, Dubinsky W, Narkar VA, Bickel PE (2016) Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1alpha/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat Commun 7:12723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150:620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Luo P, Qin C, Zhu L, Fang C, Zhang Y, Zhang H, Pei F, Tian S, Zhu XY, Gong J, Mao Q, Xiao C, Su Y, Zheng H, Xu T, Lu J, Zhang J (2018) Ubiquitin-specific peptidase 10 (USP10) inhibits hepatic Steatosis, insulin resistance, and inflammation through Sirt6. Hepatol 68:1786–1803

    Article  CAS  Google Scholar 

  100. Jung SM, Hung CM, Hildebrand SR, Sanchez-Gurmaches J, Martinez-Pastor B, Gengatharan JM, Wallace M, Mukhopadhyay D, Martinez Calejman C, Luciano AK, Hsiao WY, Tang Y, Li H, Daniels DL, Mostoslavsky R, Metallo CM, Guertin DA (2019) Non-canonical mTORC2 signaling regulates Brown adipocyte lipid catabolism through SIRT6-FoxO1. Mol Cell 75:807–822 e808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kuang J, Zhang Y, Liu Q, Shen J, Pu S, Cheng S, Chen L, Li H, Wu T, Li R, Li Y, Zou M, Zhang Z, Jiang W, Xu G, Qu A, Xie W, He J (2017) Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis. Diabetes 66:1159–1171

    Article  CAS  PubMed  Google Scholar 

  102. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, He L, Li W, Yi X, Sun L, Liang J, Cheng Z, Shi L, Shang Y, Yu W (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7:12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Watanabe H, Inaba Y, Kimura K, Matsumoto M, Kaneko S, Kasuga M, Inoue H (2018) Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat Commun 9:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Mendes KL, Lelis DF, Santos SHS (2017) Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev 38:98–105

    Article  CAS  PubMed  Google Scholar 

  105. Lemos V, de Oliveira RM, Naia L, Szego E, Ramos E, Pinho S, Magro F, Cavadas C, Rego AC, Costa V et al (2017) The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum Mol Genet 26:4105–4117

    Article  CAS  PubMed  Google Scholar 

  106. Wei T, Huang G, Liu P, Gao J, Huang C, Sun M, Shen W (2019) Sirtuin 3-mediated pyruvate dehydrogenase activity determines brown adipocytes phenotype under high-salt conditions. Cell Death Dis 10:614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gao P, Jiang Y, Wu H, Sun F, Li Y, He H, Wang B, Lu Z, Hu Y, Wei X, Cui Y, He C, Wang L, Zheng H, Yang G, Liu D, Yan Z, Zhu Z (2019) Inhibition of mitochondrial calcium overload by SIRT3 prevents obesity or age-related whitening of Brown adipose tissue. Diabetes. 69:165–180

    Article  PubMed  CAS  Google Scholar 

  108. Lang A, Anand R, Altinoluk-Hambuchen S, Ezzahoini H, Stefanski A, Iram A, Bergmann L, Urbach J, Bohler P, Hansel J et al (2017) SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging 9:2163–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Du Y, Hu H, Qu S, Wang J, Hua C, Zhang J, Wei P, He X, Hao J, Liu P et al (2018) SIRT5 deacylates metabolism-related proteins and attenuates hepatic steatosis in Ob/Ob mice. EBioMedicine 36:347–357

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang Y, Bharathi SS, Rardin MJ, Lu J, Maringer KV, Sims-Lucas S, Prochownik EV, Gibson BW, Goetzman ES (2017) Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. J Biol Chem 292:10239–10249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hong J, Mei C, Raza SHA, Khan R, Cheng G, Zan L (2019) SIRT5 inhibits bovine preadipocyte differentiation and lipid deposition by activating AMPK and repressing MAPK signal pathways. Genomics. 112:1065–1076

    Article  PubMed  CAS  Google Scholar 

  112. Pardal AJ, Fernandes-Duarte F, Bowman AJ (2019) The histone chaperoning pathway: from ribosome to nucleosome. Essays Biochem 63:29–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lomvardas S, Maniatis T (2016) Histone and DNA modifications as regulators of neuronal development and function. Cold Spring Harb Perspect Biol 8. https://doi.org/10.1101/cshperspect.a024208

  114. Xu L, Yeung MHY, Yau MYC, Lui PPY, Wong CM (2019) Role of histone acetylation and methylation in obesity. Current Pharmacology Reports

    Book  Google Scholar 

  115. Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90–101

    Article  CAS  PubMed  Google Scholar 

  116. Romanick SS, Craig U, Karen S, Andrew H, Jordanna P, Rebekah W, David Q, Yumei F, Ferguson BS (2018) Obesity-mediated regulation of cardiac protein acetylation: parallel analysis of total and acetylated proteins via TMT-tagged mass spectrometry. Biosci Rep 38:BSR20180721

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sun C, Wang M, Liu X, Luo L, Li K, Zhang S, Wang Y, Yang Y, Ding F, Gu X (2014) PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC-1alpha. Cell Rep 9:2250–2262

    Article  CAS  PubMed  Google Scholar 

  118. Sharma S, Poetz F, Bruer M, Ly-Hartig TB, Schott J, Seraphin B, Stoecklin G (2016) Acetylation-dependent control of global poly(a) RNA degradation by CBP/p300 and HDAC1/2. Mol Cell 63:927–938

    Article  CAS  PubMed  Google Scholar 

  119. Yang Y, Huang W, Qiu R, Liu R, Zeng Y, Gao J, Zheng Y, Hou Y, Wang S, Yu W, Leng S, Feng D, Wang Y (2018) LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer. J Mol Cell Biol 10:285–301

    Article  CAS  PubMed  Google Scholar 

  120. Valdez BC, Li Y, Murray D, Liu Y, Nieto Y, Champlin RE, Andersson BS (2018) Combination of a hypomethylating agent and inhibitors of PARP and HDAC traps PARP1 and DNMT1 to chromatin, acetylates DNA repair proteins, down-regulates NuRD and induces apoptosis in human leukemia and lymphoma cells. Oncotarget 9:3908–3921

    Article  PubMed  Google Scholar 

  121. Liu Y, Jiang L, Sun C, Ireland N, Shah YM, Liu Y, Rui L (2018) Insulin/Snail1 axis ameliorates fatty liver disease by epigenetically suppressing lipogenesis. Nat Commun 9:2751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lin HP, Cheng ZL, He RY, Song L, Tian MX, Zhou LS, Groh BS, Liu WR, Ji MB, Ding C, Shi YH, Guan KL, Ye D, Xiong Y (2016) Destabilization of fatty acid synthase by acetylation inhibits De novo Lipogenesis and tumor cell growth. Cancer Res 76:6924–6936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hong S, Zhou W, Fang B, Lu W, Loro E, Damle M, Ding G, Jager J, Zhang S, Zhang Y, Feng D, Chu Q, Dill BD, Molina H, Khurana TS, Rabinowitz JD, Lazar MA, Sun Z (2017) Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion. Nat Med 23:223–234

    Article  CAS  PubMed  Google Scholar 

  124. Whitt J, Woo V, Lee P, Moncivaiz J, Haberman Y, Denson L, Tso P, Alenghat T (2018) Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice. Gastroenterology 155:501–513

    Article  CAS  PubMed  Google Scholar 

  125. Paulo E, Wu D, Hecker P, Zhang Y, Wang B (2018) Adipocyte HDAC4 activation leads to beige adipocyte expansion and reduced adiposity. J Endocrinol 239:153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jia HY, Li QZ, Lv LF (2016) HDAC5 inhibits hepatic Lipogenic genes expression by attenuating the transcriptional activity of liver X receptor. Cell Physiol Biochem 39:1561–1567

    Article  CAS  PubMed  Google Scholar 

  127. Qiu X, Li J, Lv S, Yu J, Jiang J, Yao J, Xiao Y, Xu B, He H, Guo F, Zhang ZN, Zhang C, Luan B (2018) HDAC5 integrates ER stress and fasting signals to regulate hepatic fatty acid oxidation. J Lipid Res 59:330–338

    Article  CAS  PubMed  Google Scholar 

  128. Qian H, Chen Y, Nian Z, Su L, Yu H, Chen FJ, Zhang X, Xu W, Zhou L, Liu J, Yu J, Yu L, Gao Y, Zhang H, Zhang H, Zhao S, Yu L, Xiao RP, Bao Y, Hou S, Li P, Li J, Deng H, Jia W, Li P (2017) HDAC6-mediated acetylation of lipid droplet-binding protein CIDEC regulates fat-induced lipid storage. J Clin Invest 127:1353–1369

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lundh M, Petersen PS, Isidor MS, Kazoka-Sorensen DN, Plucinska K, Shamsi F, Orskov C, Tozzi M, Brown EL, Andersen E et al (2019) Afadin is a scaffold protein repressing insulin action via HDAC6 in adipose tissue. EMBO Rep 20:e48216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Daneshpajooh M, Bacos K, Bysani M, Bagge A, Ottosson Laakso E, Vikman P, Eliasson L, Mulder H, Ling C (2017) HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia 60:116–125

    Article  CAS  PubMed  Google Scholar 

  131. Qi J, Singh S, Hua WK, Cai Q, Chao SW, Li L, Liu H, Ho Y, McDonald T, Lin A, Marcucci G, Bhatia R, Huang WJ, Chang CI, Kuo YH (2015) HDAC8 inhibition specifically targets Inv(16) acute myeloid leukemic stem cells by restoring p53 acetylation. Cell Stem Cell 17:597–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li X, Park SJ, Jin F, Deng Y, Yang JH, Chang JH, Kim DY, Kim JA, Lee YJ, Murakami M, Son KH, Chang HW (2018) Tanshinone IIA suppresses FcepsilonRI-mediated mast cell signaling and anaphylaxis by activation of the Sirt1/LKB1/AMPK pathway. Biochem Pharmacol 152:362–372

    Article  CAS  PubMed  Google Scholar 

  133. Han D, Li X, Li S, Su T, Fan L, Fan WS, Qiao HY, Chen JW, Fan MM, Li XJ, Wang YB, Ma S, Qiu Y, Tian ZH, Cao F (2017) Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist. Free Radic Biol Med 113:291–303

    Article  CAS  PubMed  Google Scholar 

  134. Perrini S, Porro S, Nigro P, Cignarelli A, Caccioppoli C, Genchi VA, Martines G, De Fazio M, Capuano P, Natalicchio A et al (2019) Reduced SIRT1 and SIRT2 expression promotes adipogenesis of human visceral adipose stem cells and associates with accumulation of visceral fat in human obesity. Int J Obes 2005:307–319

    Google Scholar 

  135. Tang W, Fan Y (2019) SIRT6 as a potential target for treating insulin resistance. Life Sci 231:116558

    Article  CAS  PubMed  Google Scholar 

  136. Bae EJ (2017) Sirtuin 6, a possible therapeutic target for type 2 diabetes. Arch Pharm Res 40:1380–1389

    Article  CAS  PubMed  Google Scholar 

  137. Song C, Hotz-Wagenblatt A, Voit R, Grummt I (2017) SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes Dev 31:1370–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sirri V, Grob A, Berthelet J, Jourdan N, Roussel P (2019) Sirtuin 7 promotes 45S pre-rRNA cleavage at site 2 and determines the processing pathway. J Cell Sci 132. https://doi.org/10.1242/jcs.228601

  139. Teertam SK, Jha S, Prakash Babu P (2019) Up-regulation of Sirt1/miR-149-5p signaling may play a role in resveratrol induced protection against ischemia via p53 in rat brain. J Clin Neurosci 72:402–411

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge these funds for supporting with this article.

Funding

This study was financially supported by the Key Sci-tech innovation team of Shaanxi province (2017KCT-24), the Joint Funds of the National Natural Science Foundation of China (U1804106), the Natural Science Foundation of China (81860762), and the Fundamental Research Funds for the Central Universities (245201971).

Author information

Authors and Affiliations

Authors

Contributions

Yuexia Liu finished writing the manuscript; Hong Yang and Xuanchen Liu Liu participated in modifying the article; and Huihui Gu and Yizhou Li participated in inquiring about relevant information of the review.

Corresponding author

Correspondence to Chao Sun.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript.

Competing interests

The authors confirm that there are no conflicts of interest.

Availability of data and material

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, H., Liu, X. et al. Protein acetylation: a novel modus of obesity regulation. J Mol Med 99, 1221–1235 (2021). https://doi.org/10.1007/s00109-021-02082-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02082-2

Keywords

Navigation