Skip to main content

Advertisement

Log in

Bone marrow chimeras—a vital tool in basic and translational research

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Bone marrow chimeras are used routinely in immunology research as well as in other fields of biology. Here, we provide a concise state-of-the-art review about the types of chimerisms that can be achieved and the type of information that each model generates. We include separate sections for caveats and future developments. We provide examples from the literature in which different types of chimerism were employed to answer specific questions. While simple bone marrow chimeras allow to dissect the role of genes in distinct cell populations such as the hematopoietic cells versus non-hematopoietic cells, mixed bone marrow chimeras can provide detailed information about hematopoietic cell types and the intrinsic and extrinsic roles of individual genes. The advantages and caveats of bone marrow chimerism for the study of microglia are addressed, as well as alternatives to irradiation that minimize blood-brain-barrier disruption. Elementary principles are introduced and their potential is exemplified through summarizing recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BM:

Bone marrow

BMC:

Bone marrow chimera(s)

CNS:

Central nervous system

DC:

Dendritic cells

EAE:

Experimental autoimmune encephalomyelitis

GFP:

Green fluorescent protein

HLA:

Human leukocyte antigen

HSC:

Hematopoietic stem cell(s)

ILC:

Innate lymphoid cells

KO:

Knockout

MHC:

Major-histocompatibility complex

TBI:

Total body irradiation

WT:

Wildtype

References

  1. Seller MH (1970) Animal models for bone-marrow transplantation. J Med Genet 7(4):305–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Main JM, Prehn RT (1955) Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J Natl Cancer Inst 15(4):1023–1029

    CAS  PubMed  Google Scholar 

  3. Jacobson LO, Simmons EL, Marks EK, Robson MJ, Bethard WF, Gaston EO (1950) The role of the spleen in radiation injury and recovery. J Lab Clin Med 35(5):746–770

    CAS  PubMed  Google Scholar 

  4. Ford CE, Hamerton JL, Barnes DW, Loutit JF (1956) Cytological identification of radiation-chimaeras. Nature 177(4506):452–454

    Article  CAS  PubMed  Google Scholar 

  5. Barnes DW, Loutit JF (1957) Treatment of murine leukaemia with x-rays and homologous bone marrow. II. Br J Haematol 3(3):241–252

    Article  CAS  PubMed  Google Scholar 

  6. Thomas ED, Lochte HL Jr, Cannon JH, Sahler OD, Ferrebee JW (1959) Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest 38:1709–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257(11):491–496

    Article  CAS  PubMed  Google Scholar 

  8. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science (New York, NY) 241(4861):58–62

    Article  CAS  Google Scholar 

  9. Down JD, Tarbell NJ, Thames HD, Mauch PM (1991) Syngeneic and allogeneic bone marrow engraftment after total body irradiation: dependence on dose, dose rate, and fractionation. Blood 77(3):661–669

    CAS  PubMed  Google Scholar 

  10. Spangrude GJ (2008) Assessment of lymphocyte development in radiation bone marrow chimeras. Curr Protoc Immunol Chapter 4:Unit 4.6

    Google Scholar 

  11. Floersheim GL, Elson LA (1961) Restoration of hematopoiesis following a lethal dose of dimethyl myleran by isologic bone marrow transplantation in mice. Experiments on modification of intolerance to homologous bone marrow by 6-mercaptopurine, aminochlorambucil and cortisone. Acta Haematol 26:233–245

    Article  CAS  PubMed  Google Scholar 

  12. Peake K, Manning J, Lewis CA, Barr C, Rossi F, Krieger C (2015) Busulfan as a myelosuppressive agent for generating stable high-level bone marrow chimerism in mice. J Vis Exp: JoVE (98):e52553. https://doi.org/10.3791/52553

  13. Fiala J (1970) On the transplantability of cadaver bone marrow. In vivo determination of the viability of mouse bone marrow cells. Physiol Bohemoslov 19(5):441–445

    CAS  PubMed  Google Scholar 

  14. Friedman NB (1945) Cellular dynamics in the intestinal mucosa: the effect of irradiation on epithelial maturation and migration. J Exp Med 81(6):553–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wolf N, Stenback W, Taylor P, Graber C, Trentin J (1965) Antibiotic control of post-irradiation deaths in mice due to Pseudomonas aeruginosa. Transplantation 3:585–590

    Article  CAS  PubMed  Google Scholar 

  16. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105(3):369–377

    Article  CAS  PubMed  Google Scholar 

  17. Psottova J (1989) Proof of radiation chimera by means of chromosomal analysis. Acta Univ Carol Med 35(3–4):179–185

    CAS  Google Scholar 

  18. Duran-Struuck R, Dysko RC (2009) Principles of bone marrow transplantation (BMT): providing optimal veterinary and husbandry care to irradiated mice in BMT studies. J Am Assoc Lab Anim Sci: JAALAS 48(1):11–22

    CAS  PubMed  Google Scholar 

  19. Chen BJ, Cui X, Sempowski GD, Domen J, Chao NJ (2004) Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood 103(11):4344–4352

    Article  CAS  PubMed  Google Scholar 

  20. Auletta JJ, Devecchio JL, Ferrara JL, Heinzel FP (2004) Distinct phases in recovery of reconstituted innate cellular-mediated immunity after murine syngeneic bone marrow transplantation. Biol Blood Marrow Transplant 10(12):834–847

    Article  PubMed  Google Scholar 

  21. Kreymborg K, Haak S, Murali R, Wei J, Waitz R, Gasteiger G, Savage PA, van den Brink MR, Allison JP (2015) Ablation of B7-H3 but not B7-H4 results in highly increased tumor burden in a murine model of spontaneous prostate cancer. Cancer Immunol Res 3(8):849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567

    Article  CAS  PubMed  Google Scholar 

  23. Shehata HM, Hoebe K, Chougnet CA (2015) The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 14(2):191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gutcher I, Urich E, Wolter K, Prinz M, Becher B (2006) Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat Immunol 7(9):946–953

    Article  CAS  PubMed  Google Scholar 

  25. Gu H, Zou Y-R, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through cre-loxP-mediated gene targeting. Cell 73:10

    Article  Google Scholar 

  26. Gu H, Zou YR, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73(6):1155–1164

    Article  CAS  PubMed  Google Scholar 

  27. Kitamura D, Roes J, Kuhn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350(6317):423–426

    Article  CAS  PubMed  Google Scholar 

  28. Mombaerts P, Clarke AR, Hooper ML, Tonegawa S (1991) Creation of a large genomic deletion at the T-cell antigen receptor beta-subunit locus in mouse embryonic stem cells by gene targeting. Proc Natl Acad Sci U S A 88(8):3084–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stein P, Weber M, Prufer S, Schmid B, Schmitt E, Probst HC, Waisman A, Langguth P, Schild H, Radsak MP (2011) Regulatory T cells and IL-10 independently counterregulate cytotoxic T lymphocyte responses induced by transcutaneous immunization. PLoS One 6(11):e27911. https://doi.org/10.1371/journal.pone.0027911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944–950

    Article  CAS  PubMed  Google Scholar 

  31. Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D, Kummer MP, Quinn M, Bruck W, Bechmann I, Heneka MT (2011) Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J Neurosci 31(31):11159–11171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kierdorf K, Katzmarski N, Haas CA, Prinz M (2013) Bone marrow cell recruitment to the brain in the absence of irradiation or parabiosis bias. PLoS One 8(3):e58544. https://doi.org/10.1371/journal.pone.0058544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lewis CA, Manning J, Barr C, Peake K, Humphries RK, Rossi F, Krieger C (2013) Myelosuppressive conditioning using busulfan enables bone marrow cell accumulation in the spinal cord of a mouse model of amyotrophic lateral sclerosis. PLoS One 8(4):e60661. https://doi.org/10.1371/journal.pone.0060661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun J, Wei ZZ, Gu X, Zhang JY, Zhang Y, Li J, Wei L (2015) Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol 272:78–87

    Article  CAS  PubMed  Google Scholar 

  35. Skelton D, Satake N, Kohn DB (2001) The enhanced green fluorescent protein (eGFP) is minimally immunogenic in C57BL/6 mice. Gene Ther 8(23):1813–1814

    Article  CAS  PubMed  Google Scholar 

  36. McKenna KC, Vicetti Miguel RD, Beatty KM, Bilonick RA (2011) A caveat for T cell transfer studies: generation of cytotoxic anti-Thy1.2 antibodies in Thy1.1 congenic mice given Thy1.2+ tumors or T cells. J Leukoc Biol 89(2):291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ansari AM, Ahmed AK, Matsangos AE, Lay F, Born LJ, Marti G, Harmon JW, Sun Z (2016) Cellular GFP toxicity and immunogenicity: potential confounders in in vivo cell tracking experiments. Stem Cell Rev 12(5):553–559

    Article  CAS  PubMed Central  Google Scholar 

  38. Stripecke R, Carmen Villacres M, Skelton D, Satake N, Halene S, Kohn D (1999) Immune response to green fluorescent protein: implications for gene therapy. Gene Ther 6(7):1305–1312

    Article  CAS  PubMed  Google Scholar 

  39. Waterstrat A, Liang Y, Swiderski CF, Shelton BJ, Van Zant G (2010) Congenic interval of CD45/Ly-5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment. Blood 115(2):408–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hall EJ, Giaccia AJ (2012) Radiobiology for the radiologist (seventh edition), 7th edition edn. Wolters Kluwer Health/Lippincott Williams & Wilkings, Philadelphia PA

    Google Scholar 

  41. Staley EM, Tanner SM, Daft JG, Stanus AL, Martin SM, Lorenz RG (2013) Maintenance of host leukocytes in peripheral immune compartments following lethal irradiation and bone marrow reconstitution: implications for graft versus host disease. Transpl Immunol 28(2–3):112–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vermijlen D, Prinz I (2014) Ontogeny of innate T lymphocytes—some innate lymphocytes are more innate than others. Front Immunol 5:486. https://doi.org/10.3389/fimmu.2014.00486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Bekkum DW, Roodenburg J, Heidt PJ, van der Waaij D (1974) Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst 52(2):401–404

    Article  PubMed  Google Scholar 

  44. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai T, Oravecz-Wilson K, Wu SR, Sun Y, Rossi C (2016) Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 17(5):505–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, Ling L, Kosuri S, Maloy M, Slingerland JB (2017) Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol 35(15):1650–1659

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, Slingerland AE, Smith OM, Young LF, Gupta J et al (2016) Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med 8(339):339–371

    Article  CAS  Google Scholar 

  47. Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ (2018) Clinical application and potential of fecal microbiota transplantation. Annu Rev Med 70:335–351

    Article  CAS  PubMed  Google Scholar 

  48. Hui S, Takahashi Y, Holtan SG, Azimi R, Seelig D, Yagi M, Ingvalson J, Alaei P, Sharkey L, Kodal B, Peterson N, Meyer C, Godin L, Ehrhardt M, Storme G, Zhou D, Panoskaltsis-Mortari A (2017) Early assessment of dosimetric and biological differences of total marrow irradiation versus total body irradiation in rodents. Radiother Oncol 124(3):468–474

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, Mosaliganti KR, Collins ZM, Hiscock TW, Shea J (2018) Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science (New York, NY) 360(6386). https://doi.org/10.1126/science.aaq1392

  50. Farzadfard F, Lu TK (2018) Emerging applications for DNA writers and molecular recorders. Science (New York, NY) 361(6405):870–875

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Carla Rohrer-Bley supported us with her expertise in radiation biology. Work in the lab of Jon Laman is supported by the Dutch MS Research Society and the Zabawas foundation. Work in the lab of Thorsten Buch was supported by the Swiss MS Society and the Hertie Foundation. Work in the lab of Johannes vom Berg was supported by Swiss Cancer Research and the Novartis foundation for medical-biological research. Dr. Prajwal is supported by the UZH Entrepreneur-Fellowship in BioTech and MedTech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Buch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, F.M., Palle, P., vom Berg, J. et al. Bone marrow chimeras—a vital tool in basic and translational research. J Mol Med 97, 889–896 (2019). https://doi.org/10.1007/s00109-019-01783-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01783-z

Keywords

Navigation