Skip to main content
Log in

Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species.

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Diabetic peripheral neuropathy (DPN) is one of the most common diabetic complications. Mechanisms underlying nerve damage and sensory loss following metabolic dysfunction remain largely unclear. Recently, hyperglycemia-induced mitochondrial dysfunction and the generation of reactive oxygen species (ROS) have gained attention as possible mechanisms of organ damage in diabetes. Hypoxia-inducible factor 1 (HIF1α) is a key transcription factor activated by hypoxia, hyperglycemia, nitric oxide as well as ROS, suggesting a fundamental role in DPN susceptibility. We analyzed regulation of HIF1α in response to prolonged hyperglycemia. Genetically modified mutant mice, which conditionally lack HIF1α in peripheral sensory neurons (SNS-HIF1α−/−), were analyzed longitudinally up to 6 months in the streptozotocin (STZ) model of type1 diabetes. Behavioral measurements of sensitivity to thermal and mechanical stimuli, quantitative morphological analyses of intraepidermal nerve fiber density, measurements of ROS, ROS-induced cyclic GMP-dependent protein kinase 1α (PKG1α), and levels of vascular endothelial growth factor (VEGF) in sensory neurons in vivo were undertaken over several months post-STZ injections to delineate the role of HIF1α in DPN. Longitudinal behavioral and morphological analyses at 5, 13, and 24 weeks post-STZ treatment revealed that SNS-HIF1α−/− developed stronger hyperglycemia-evoked losses of peripheral nociceptive sensory axons associated with stronger losses of mechano- and heat sensation with a faster onset than HIF1αfl/fl mice. Mechanistically, these histomorphologic, behavioral, and biochemical differences were associated with a significantly higher level of STZ-induced production of ROS and ROS-induced PKG1α dimerization in sensory neurons of SNS-HIF1α−/− mice as compared with HIF1αfl/fl. We found that prolonged hyperglycemia induced VEGF expression in the sciatic nerve which is impaired in SNS-HIF1α mice. Our results indicate that HIF1α is as an upstream modulator of ROS in peripheral sensory neurons and exerts a protective function in suppressing hyperglycemia-induced nerve damage by limiting ROS levels and by inducing expression of VEGF which may promote peripheral nerve survival. Our data suggested that HIF1α stabilization may be thus a new strategy target for limiting sensory loss, a debilitating late complication of diabetes.

Key messages

• Impaired hypoxia-inducible factor 1α (HIF1α) signaling leads to early onset of STZ-induced loss of sensation in mice.

• STZ-induced loss of sensation in HIF1α mutant mice is associated with loss of sensory nerve fiber in skin.

• Activation of HIF1α signaling in diabetic mice protects the sensory neurons by limiting ROS formation generated due to mitochondrial dysfunction and by inducing VEGF expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HIF1α:

Hypoxia-inducible factor 1α

ROS:

Reactive oxygen species

STZ:

Streptozotocin

DPN:

Diabetic peripheral neuropathy

DRG:

Dorsal root ganglia

SNS:

Sensory neuron-specific

References

  1. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442

    Article  Google Scholar 

  2. Duby JJ, Campbell RK, Setter SM, White JR, Rasmussen KA (2004) Diabetic neuropathy: an intensive review. Am J Health Syst Pharm 61:160–173

    CAS  PubMed  Google Scholar 

  3. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain. Nat Rev Dis Primers 3:17002

    Article  Google Scholar 

  4. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11(6):521–534

    Article  Google Scholar 

  5. Vincent AM, Callaghan BC, Smith AL, Feldman EL (2011) Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7(10):573–583

    Article  CAS  Google Scholar 

  6. Oates PJ (2002) Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol 50:325–392

    Article  CAS  Google Scholar 

  7. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 97(22):12222–12226

    Article  CAS  Google Scholar 

  8. Eichberg J (2002) Protein kinase C changes in diabetes: is the concept relevant to neuropathy? Int Rev Neurobiol 50:61–82

    Article  CAS  Google Scholar 

  9. Misur I, Zarković K, Barada A, Batelja L, Milicević Z, Turk Z (2004) Advanced glycation endproducts in peripheral nerve in type 2 diabetes with neuropathy. Acta Diabetol 41(4):158–166

    Article  CAS  Google Scholar 

  10. Miyauchi Y, Shikama H, Takasu T, Okamiya H, Umeda M, Hirasaki E, Ohhata I, Nakayama H, Nakagawa S (1996) Slowing of peripheral motor nerve conduction was ameliorated by aminoguanidine in streptozocin-induced diabetic rats. Eur J Endocrinol 134(4):467–473

    Article  CAS  Google Scholar 

  11. van der Vlies D, Makkinje M, Jansens A, Braakman I, Verkleij AJ, Wirtz KW et al (2003) Oxidation of ER resident proteins upon oxidative stress: effects of altering cellular redox/antioxidant status and implications for protein maturation. Antioxid Redox Signal 5(4):381–387

    Article  Google Scholar 

  12. Fiorentino TV, Prioletta A, Zuo P, Folli F (2013) Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 19(32):5695–5703

    Article  CAS  Google Scholar 

  13. Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L (2004) Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 53(12):3226–3232

    Article  CAS  Google Scholar 

  14. Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5(5):378–389

    Article  Google Scholar 

  15. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  Google Scholar 

  16. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272(36):22642–22647

    Article  CAS  Google Scholar 

  17. Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW, Klausner RD, Pause A (1999) Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A 96(22):12436–12441

    Article  CAS  Google Scholar 

  18. Kanngiesser M, Mair N, Lim HY, Zschiebsch K, Blees J, Häussler A, Brüne B, Ferreiròs N, Kress M, Tegeder I (2014) Hypoxia-inducible factor 1 regulates heat and cold pain sensitivity and persistence. Antioxid Redox Signal 20(16):2555–2571

    Article  CAS  Google Scholar 

  19. Agarwal N, Offermanns S, Kuner R (2004) Conditional gene deletion in primary nociceptive neurons of trigeminal ganglia and dorsal root ganglia. Genesis 38(3):122–129

    Article  CAS  Google Scholar 

  20. Simonetti M, Agarwal N, Stösser S, Bali KK, Karaulanov E, Kamble R, Pospisilova B, Kurejova M, Birchmeier W, Niehrs C, Heppenstall P, Kuner R (2014) Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways. Neuron 83(1):104–121

    Article  CAS  Google Scholar 

  21. Guo BL, Sui BD, Wang XY, Wei YY, Huang J, Chen J, Wu SX, Li YQ, Wang YY, Yang YL (2013) Significant changes in mitochondrial distribution in different pain models of mice. Mitochondrion 13(4):292–297

    Article  CAS  Google Scholar 

  22. Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79(6):405–425

    Article  Google Scholar 

  23. Hsieh YL, Lin CL, Chiang H, Fu YS, Lue JH, Hsieh ST (2012) Role of peptidergic nerve terminals in the skin: reversal of thermal sensation by calcitonin gene-related peptide in TRPV1-depleted neuropathy. PLoS One 7(11):e50805

    Article  CAS  Google Scholar 

  24. Koulmanda M, Qipo A, Chebrolu S, O'Neil J, Auchincloss H, Smith RN (2003) The effect of low versus high dose of streptozotocin in cynomolgus monkeys (Macaca fascilularis). Am J Transplant 3:267–272

    Article  CAS  Google Scholar 

  25. Yorek MA (2016) Alternatives to the streptozotocin-diabetic rodent. Int Rev Neurobiol 127:89–112

    Article  CAS  Google Scholar 

  26. Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    Article  CAS  Google Scholar 

  27. Korngut L, Ma CH, Martinez JA, Toth CC, Guo GF, Singh V et al (2012) Overexpression of human HSP27 protects sensory neurons from diabetes. Neurobiol Dis 47(3):436–443

    Article  CAS  Google Scholar 

  28. Murakami T, Iwanaga T, Ogawa Y, Fujita Y, Sato E, Yoshitomi H, Sunada Y, Nakamura A (2013) Development of sensory neuropathy in streptozotocin-induced diabetic mice. Brain Behav 3:35–41

    Article  Google Scholar 

  29. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    Article  CAS  Google Scholar 

  30. Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L (2004) Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 53(12):3226–3232

    Article  CAS  Google Scholar 

  31. Bullock JJ, Mehta SL, Lin Y, Lolla P, Li PA (2009) Hyperglycemia-enhanced ischemic brain damage in mutant manganese SOD mice is associated with suppression of HIF-1alpha. Neurosci Lett 456(2):89–92

    Article  CAS  Google Scholar 

  32. Hirota K, Semenza GL (2001) Rac1 activity is required for the activation of hypoxia-inducible factor 1. J Biol Chem 276(24):21166–72

    Article  CAS  Google Scholar 

  33. Gough DR, Cotter TG (2011) Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis 6(2):e213

    Article  Google Scholar 

  34. Dengler VL, Galbraith M, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49(1): 1–15 49:1–15

    Article  CAS  Google Scholar 

  35. Xiao H, Gu Z, Wang G, Zhao T (2013) The possible mechanisms underlying the impairment of HIF-1α pathway signaling in hyperglycemia and the beneficial effects of certain therapies. Int J Med Sci 10(10):1412–1421

    Article  Google Scholar 

  36. Yagihashi S, Mizukami H, Sugimoto K (2011) Mechanism of diabetic neuropathy: where are we now and where to go? J Diabetes Investig 2(1):18–32

    Article  CAS  Google Scholar 

  37. Pabbidi RM, Yu SQ, Peng S, Khardori R, Pauza ME, Premkumar LS (2008) Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain 1(4):9

    Google Scholar 

  38. Andersson DA, Gentry C, Light E, Vastani N, Vallortigara J, Bierhaus A, Fleming T, Bevan S (2013) Methylglyoxal evokes pain by stimulating TRPA1. PLoS One 8(10):e77986

    Article  CAS  Google Scholar 

  39. Bohuslavova R, Cerychova R, Nepomucka K, Pavlinkova G (2017) Renal injury is accelerated by global hypoxia-inducible factor 1 alpha deficiency in a mouse model of STZ-induced diabetes. BMC Endocr Disord 17(1):48

    Article  Google Scholar 

  40. Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S et al (2008) Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A 105(49):19426–19431

    Article  CAS  Google Scholar 

  41. Bonello S, Zähringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C et al (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27(4):755–761

    Article  CAS  Google Scholar 

  42. Zhang Q, Fang W, Ma L, Wang ZD, Yang YM, Lu YQ (2018) VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes: a cohort study. Medicine (Baltimore) 97(15):e0415

    Article  CAS  Google Scholar 

  43. Schratzberger P, Walter DH, Rittig K, Bahlmann FH, Pola R, Curry C, Silver M, Krainin JG, Weinberg DH, Ropper AH, Isner JM (2001) Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 107(9):1083–1092

    Article  CAS  Google Scholar 

  44. Dengler VL, Galbraith M, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49(1):1–15

    Article  CAS  Google Scholar 

  45. Kim HK, Par SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE et al (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111(1–2):116–124

    Article  CAS  Google Scholar 

  46. Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K, Chung JM (2011) Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain 152(4):844–852

    Article  CAS  Google Scholar 

  47. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  Google Scholar 

  48. Shah MS, Brownlee M (2016) Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 118(11):1808–1829

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Rose LeFaucheur for secretarial help, Dunja Baumgartl-Ahlert and Hans-Joseph Wrede for technical assistance, and Dr. Manuela Simonetti for help with i.t injections. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) in the Collaborative Research Center 1118 (SFB1118 Project B06) to N.A. and R.K. We acknowledge support from the Interdisciplinary Neurobehavioral Core (INBC) for behavioral experiments.

Author information

Authors and Affiliations

Authors

Contributions

NA and RK designed the study; IT mated HIF1αfl/fl mice and SNS-Cre mice and gave general conceptual input; DRR performed and analyzed in vivo experiments; NA and DRR performed and analyzed in vitro experiments; NA and RK generated the SNS-Cre line and wrote the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Nitin Agarwal.

Ethics declarations

All animal experiments were done in accordance with ethical guidelines and approved by Regierungspräsidium Karlsruhe, Germany. The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, D.R., Tegeder, I., Kuner, R. et al. Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species.. J Mol Med 96, 1395–1405 (2018). https://doi.org/10.1007/s00109-018-1707-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1707-9

Keywords

Navigation