Skip to main content

Advertisement

Log in

Epigenetic regulation of RTK signaling

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Receptor tyrosine kinase (RTK) signaling cascades coordinate intracellular signaling in response to growth factors, chemokines, and other extracellular stimuli to control fundamental biological processes such as cellular proliferation, metabolism, and survival. Hyperactivation of pathways associated with growth factor signaling (e.g., RTK and downstream effectors including Ras, PI3K/AKT, and Raf) is a frequent event in human cancers, which uncouples ligand-mediated activation with signal transduction. While the contributions of direct genomic events are well understood as causative agents of hyperactive signal transduction, other non-heritable genomic modifications promote the activation of growth factor-associated signaling cascades. In this review, we highlight epigenomic mechanisms by which hyperactivation of RTK-associated signaling cascades occurs and may contribute to cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cancer Genome Atlas N (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576–582

    Article  Google Scholar 

  2. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52

    Article  CAS  PubMed  Google Scholar 

  4. Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557

    Article  CAS  PubMed  Google Scholar 

  5. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    Article  CAS  PubMed  Google Scholar 

  7. Schlessinger J (2014) Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol 6

  8. Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 14:598–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13:195–203

    Article  CAS  PubMed  Google Scholar 

  10. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    Article  CAS  PubMed  Google Scholar 

  11. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    Article  CAS  PubMed  Google Scholar 

  12. Di Cerbo V, Schneider R (2013) Cancers with wrong HATs: the impact of acetylation. Brief Funct Genomics 12:231–243

    Article  CAS  PubMed  Google Scholar 

  13. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liffers K, Kolbe K, Westphal M, Lamszus K, Schulte A (2016) Histone deacetylase inhibitors resensitize EGFR/EGFRvIII-overexpressing, erlotinib-resistant glioblastoma cells to tyrosine kinase inhibition. Target Oncol 11:29–40

    Article  PubMed  Google Scholar 

  15. Pei Y, Liu KW, Wang J, Garancher A, Tao R, Esparza LA, Maier DL, Udaka YT, Murad N, Morrissy S et al (2016) HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell 29:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun K, Atoyan R, Borek MA, Dellarocca S, Samson ME, Ma AW, Xu GX, Patterson T, Tuck DP, Viner JL et al (2017) Dual HDAC and PI3K inhibitor CUDC-907 downregulates MYC and suppresses growth of MYC-dependent cancers. Mol Cancer Ther 16:285–299

    Article  CAS  PubMed  Google Scholar 

  17. Wilson-Edell KA, Yevtushenko MA, Rothschild DE, Rogers AN, Benz CC (2014) mTORC1/C2 and pan-HDAC inhibitors synergistically impair breast cancer growth by convergent AKT and polysome inhibiting mechanisms. Breast Cancer Res Treat 144:287–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vinogradova M, Gehling VS, Gustafson A, Arora S, Tindell CA, Wilson C, Williamson KE, Guler GD, Gangurde P, Manieri W et al (2016) An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat Chem Biol 12:531–538

    Article  CAS  PubMed  Google Scholar 

  20. Gale M, Sayegh J, Cao J, Norcia M, Gareiss P, Hoyer D, Merkel JS, Yan Q (2016) Screen-identified selective inhibitor of lysine demethylase 5A blocks cancer cell growth and drug resistance. Oncotarget 7:39931–39944

    PubMed  PubMed Central  Google Scholar 

  21. Majumdar G, Adris P, Bhargava N, Chen H, Raghow R (2012) Pan-histone deacetylase inhibitors regulate signaling pathways involved in proliferative and pro-inflammatory mechanisms in H9c2 cells. BMC Genomics 13:709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoon S, Eom GH (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J 52:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  23. Song H, Li CW, Labaff AM, Lim SO, Li LY, Kan SF, Chen Y, Zhang K, Lang J, Xie X et al (2011) Acetylation of EGF receptor contributes to tumor cell resistance to histone deacetylase inhibitors. Biochem Biophys Res Commun 404:68–73

    Article  CAS  PubMed  Google Scholar 

  24. Zecchin A, Pattarini L, Gutierrez MI, Mano M, Mai A, Valente S, Myers MP, Pantano S, Giacca M (2014) Reversible acetylation regulates vascular endothelial growth factor receptor-2 activity. J Mol Cell Biol 6:116–127

    Article  CAS  PubMed  Google Scholar 

  25. Luczak MW, Jagodzinski PP (2006) The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44:143–154

    CAS  PubMed  Google Scholar 

  26. Spangle JM, Roberts TM, Zhao JJ (2017) The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim Biophys Acta 1868:123–131

    CAS  PubMed  Google Scholar 

  27. Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427–5440

    Article  CAS  PubMed  Google Scholar 

  28. Kang YH, Lee HS, Kim WH (2002) Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Investig 82:285–291

    Article  CAS  PubMed  Google Scholar 

  29. Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL (1998) Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci U S A 95:5246–5250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin L, Cai WJ, Liu CX, Chen YZ, Hu JM, Jiang JF, Li HA, Cui XB, Chang XY, Zhang WJ et al (2013) Analysis of PTEN methylation patterns in soft tissue sarcomas by MassARRAY spectrometry. PLoS One 8:e62971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wee S, Wiederschain D, Maira SM, Loo A, Miller C, deBeaumont R, Stegmeier F, Yao YM, Lengauer C (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci U S A 105:13057–13062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555

    CAS  PubMed  Google Scholar 

  34. Lapidus RG, Ferguson AT, Ottaviano YL, Parl FF, Smith HS, Weitzman SA, Baylin SB, Issa JP, Davidson NE (1996) Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res 2:805–810

    CAS  PubMed  Google Scholar 

  35. Jarrard DF, Kinoshita H, Shi Y, Sandefur C, Hoff D, Meisner LF, Chang C, Herman JG, Isaacs WB, Nassif N (1998) Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Res 58:5310–5314

    CAS  PubMed  Google Scholar 

  36. Nakayama T, Watanabe M, Suzuki H, Toyota M, Sekita N, Hirokawa Y, Mizokami A, Ito H, Yatani R, Shiraishi T (2000) Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab Investig 80:1789–1796

    Article  CAS  PubMed  Google Scholar 

  37. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suva ML, Bernstein BE (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114

    Article  CAS  PubMed  Google Scholar 

  39. Katainen R, Dave K, Pitkanen E, Palin K, Kivioja T, Valimaki N, Gylfe AE, Ristolainen H, Hanninen UA, Cajuso T et al (2015) CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet 47:818–821

    Article  CAS  PubMed  Google Scholar 

  40. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, Goldmann J, Lajoie BR, Fan ZP, Sigova AA et al (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang B, Finn RS (2016) Personalized clinical trials in hepatocellular carcinoma based on biomarker selection. Liver Cancer 5:221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feinberg AP, Vogelstein B (1983) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111:47–54

    Article  CAS  PubMed  Google Scholar 

  43. Nishigaki M, Aoyagi K, Danjoh I, Fukaya M, Yanagihara K, Sakamoto H, Yoshida T, Sasaki H (2005) Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res 65:2115–2124

    Article  CAS  PubMed  Google Scholar 

  44. Luo J, Li YN, Wang F, Zhang WM, Geng X (2010) S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci 6:784–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Huang SK, Marzese DM, Hsu SC, Kawas NP, Chong KK, Long GV, Menzies AM, Scolyer RA, Izraely S et al (2015) Epigenetic changes of EGFR have an important role in BRAF inhibitor-resistant cutaneous melanomas. J Invest Dermatol 135:532–541

    Article  PubMed  Google Scholar 

  49. Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  PubMed  Google Scholar 

  50. Popkie AP, Zeidner LC, Albrecht AM, D'Ippolito A, Eckardt S, Newsom DE, Groden J, Doble BW, Aronow B, McLaughlin KJ et al (2010) Phosphatidylinositol 3-kinase (PI3K) signaling via glycogen synthase kinase-3 (Gsk-3) regulates DNA methylation of imprinted loci. J Biol Chem 285:41337–41347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murata A, Baba Y, Watanabe M, Shigaki H, Miyake K, Ishimoto T, Iwatsuki M, Iwagami S, Yoshida N, Oki E et al (2014) IGF2 DMR0 methylation, loss of imprinting, and patient prognosis in esophageal squamous cell carcinoma. Ann Surg Oncol 21:1166–1174

    Article  PubMed  Google Scholar 

  52. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755

    Article  CAS  PubMed  Google Scholar 

  53. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  CAS  PubMed  Google Scholar 

  54. Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, MacLeod AR (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33:61–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to the many colleagues whose work they were unable to cite due to space limitations. This work was supported by the American Cancer Society (125303-PF-13-097-01-CCE, to J.M.S) and the National Institutes of Health (P50 CA168504; P50 CA16596; CA187918-02, to T.M.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M Roberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spangle, J.M., Roberts, T.M. Epigenetic regulation of RTK signaling. J Mol Med 95, 791–798 (2017). https://doi.org/10.1007/s00109-017-1546-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1546-0

Keywords

Navigation