Skip to main content

Advertisement

Log in

Isoliquiritigenin prevents the progression of psoriasis-like symptoms by inhibiting NF-κB and proinflammatory cytokines

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Isoliquiritigenin (ISL) is an important flavonoid component of licorice and has been reported to possess anti-inflammatory and antioxidant properties, but its exact mechanism of action remains poorly understood. Previously, we demonstrated that ISL could suppress IL-6 expression in multiple myeloma. Here, we further characterized the anti-inflammatory effects of ISL in several psoriasis models, including the keratin 14/vascular endothelial growth factor (VEGF) transgenic mouse, the imiquimod (IMQ)-induced psoriasis-like mouse, and the human keratinocytes HaCaT and NHEK in vitro. We found that ISL ameliorated the inflammatory process in psoriasis models but not in their respective controls. Moreover, the anti-inflammatory effects of ISL were attributed to the suppression of nuclear factor-κB (NF-κB) activity, which consequently resulted in the reduction of pro-inflammation cytokines IL-6 and IL-8 expression. In conclusion, ISL exhibited anti-inflammatory effects in psoriasis models, by downregulating IL-6 and IL-8 via suppression of NF-κB activity, suggesting that ISL might serve as a potential candidate for treatment of psoriasis and other autoimmune inflammatory diseases.

Key message

  • ISL could ameliorate the inflammatory process of psoriasis.

  • ISL could suppress NF-κB and subsequent production of a series of pro-inflammatory cytokines.

  • Dual-inhibitory activity against IL-6 and IL-8 of ISL is implemented via inhibiting NF-κB.

  • ISL exerts no inhibitory effects on normal human keratinocytes or wild-type Balb/c mice, implying its low toxicity and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shibata S (2000) A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zsshi 120:849–862

    CAS  Google Scholar 

  2. Olukoga A, Donaldson D (1998) Historical perspectives on health - the history of liquorice: the plant, its extract, cultivation, commercialisation and etymology. J R Soc Health 118:300–304

    Article  CAS  Google Scholar 

  3. Reid DP (1995) A handbook of Chinese healing Herbs. SHAMBHALA PUB Incorporated.

  4. Huseman PA (1944) Licorice: putting a weed to work. Heffer & Sons, Ltd, London

    Google Scholar 

  5. Wang ZY, Nixon DW (2001) Licorice and cancer. Nutr Cancer 39:1–11

    Article  PubMed  CAS  Google Scholar 

  6. Gibson M (1978) Glycyrrhiza in old and new perspectives. Lloydia 41:348–354

    PubMed  CAS  Google Scholar 

  7. Fenwick G, Lutomski J, Nieman C (1990) Liquorice, Glycyrrhiza glabra L.—composition, uses and analysis. Food Chem 38:119–143

    Article  CAS  Google Scholar 

  8. Fu B, Li H, Wang X, Lee FS, Cui S (2005) Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J Agr Food Chem 53:7408–7414

    Article  CAS  Google Scholar 

  9. Yamamoto S, Aizu E, Jiang H, Nakadate T, Kiyoto I, Wang JC, Kato R (1991) The potent anti-tumor-promoting agent isoliquiritigenin. Carcinogenesis 12:317–323

    Article  PubMed  CAS  Google Scholar 

  10. Yadav VR, Prasad S, Sung B, Aggarwal BB (2011) The role of chalcones in suppression of NF-kappaB-mediated inflammation and cancer. Int Immunopharmacol 11:295–309

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Chen X, Wu Y, Jiang Y, Zhou Y, Wang Y, Yao Y, Yi C, Gou L, Yang J (2012) Isoliquiritigenin inhibits the growth of multiple myeloma via blocking IL-6 signaling. J Mol Med 90:1311–1319

    Article  PubMed  CAS  Google Scholar 

  12. Schon MP, Boehncke WH (2005) Psoriasis. New Engl J Med 352:1899–1912

    Article  PubMed  CAS  Google Scholar 

  13. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, H-g Z, Wang T, Zheng J (2011) Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35:596–610

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Christophers E (2001) Psoriasis—epidemiology and clinical spectrum. Clin Exp Dermatol 26:314–320

    Article  PubMed  CAS  Google Scholar 

  15. Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. New Engl J Med 361:496–509

    Article  PubMed  CAS  Google Scholar 

  16. Gottlieb AB (2005) Psoriasis: emerging therapeutic strategies. Nat Rrev Drug Discov 4:19–34

    Article  CAS  Google Scholar 

  17. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. New Engl J Med 336:1066–1071

    Article  PubMed  CAS  Google Scholar 

  19. Goldminz A, Au S, Kim N, Gottlieb A, Lizzul P (2013) NF-κB: an essential transcription factor in psoriasis. J Dermatol Sci 69:89–94

    Article  PubMed  CAS  Google Scholar 

  20. Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT, Kupper TS, Sehgal PB, Gottlieb AB (1989) Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci U S A 86:6367–6371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Huggenberger R, Ullmann S, Proulx ST, Pytowski B, Alitalo K, Detmar M (2010) Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J Exp Med 207:2255–2269

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Wang H, Peters T, Sindrilaru A, Scharffetter-Kochanek K (2009) Key role of macrophages in the pathogenesis of CD18 hypomorphic murine model of psoriasis. J Invest Dermatol 129:1100–1114

    Article  PubMed  CAS  Google Scholar 

  23. Schon MP (1999) Animal models of psoriasis—what can we learn from them? J Invest Dermatol 112:405–410

    Article  PubMed  CAS  Google Scholar 

  24. Detmar M, Brown LF, Schön MP, Elicker BM, Velasco P, Richard L, Fukumura D, Monsky W, Claffey KP, Jain RK (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111:1–6

    Article  PubMed  CAS  Google Scholar 

  25. Baker B, Brent L, Valdimarsson H, Powles A, Al‐Imara L, Walker M, Fry L (1992) Is epidermal cell proliferation in psoriatic skin grafts on nude mice driven by T‐cell derived cytokines? Brit J Dermatol 126:105–110

    Article  CAS  Google Scholar 

  26. Li J, Li X, Zhang Y, Zhou X, Yang H, Chen X, Wang Y, Wei Y, Chen L, Hu H et al (2010) Gene therapy for psoriasis in the K14‐VEGF transgenic mouse model by topical transdermal delivery of interleukin‐4 using ultradeformable cationic liposome. J Gene Med 12:481–490

    Article  PubMed  CAS  Google Scholar 

  27. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182:5836–5845

    Article  PubMed  CAS  Google Scholar 

  28. Guilloteau K, Paris I, Pedretti N, Boniface K, Juchaux F, Huguier V, Guillet G, Bernard FX, Lecron JC, Morel F (2010) Skin inflammation induced by the synergistic action of IL-17A, IL-22, oncostatin M, IL-1 alpha, and TNF-alpha recapitulates some features of psoriasis. J Immunol 184:5263–5270

    Article  CAS  Google Scholar 

  29. Banno T, Gazel A, Blumenberg M (2004) Effects of tumor necrosis factor-α (TNFα) in epidermal keratinocytes revealed using global transcriptional profiling. J Biol Chem 279:32633–32642

    Article  PubMed  CAS  Google Scholar 

  30. Boniface K, Diveu C, Morel F, Pedretti N, Froger J, Ravon E, Garcia M, Venereau E, Preisser L, Guignouard E (2007) Oncostatin M secreted by skin infiltrating T lymphocytes is a potent keratinocyte activator involved in skin inflammation. J Immunol 178:4615–4622

    Article  PubMed  CAS  Google Scholar 

  31. Mee JB, Johnson CM, Morar N, Burslem F, Groves RW (2007) The psoriatic transcriptome closely resembles that induced by interleukin-1 in cultured keratinocytes: dominance of innate immune responses in psoriasis. Am J Pathol 171:32–42

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Nograles K, Zaba L, Guttman‐Yassky E, Fuentes‐Duculan J, Suárez‐Fariñas M, Cardinale I, Khatcherian A, Gonzalez J, Pierson K, White T (2008) Th17 cytokines interleukin (IL)‐17 and IL‐22 modulate distinct inflammatory and keratinocyte‐response pathways. Brit J Dermatol 159:1092–1102

    CAS  Google Scholar 

  33. Schoop VM, Mirancea N, Fusenig NE (1999) Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol 112:343–353

    Article  PubMed  CAS  Google Scholar 

  34. Boniface K, Lecron JC, Bernard FX, Dagregorio G, Guillet G, Nau F, Morel F (2005) Keratinocytes as targets for interleukin-10-related cytokines: a putative role in the pathogenesis of psoriasis. Eur Cytokine Netw 16:309–319

    PubMed  CAS  Google Scholar 

  35. Spinks E, Fenwick G (1990) The determination of glycyrrhizin in selected UK liquorice products. Food Addit Contam 7:769–778

    Article  PubMed  CAS  Google Scholar 

  36. Andres RM, Montesinos MC, Navalon P, Paya M, Terencio MC (2013) NF-kappa B and STAT3 inhibition as a therapeutic strategy in psoriasis: in vitro and in vivo effects of BTH. J Invest Dermatol 133:2362–2371

    Article  PubMed  CAS  Google Scholar 

  37. Maggiolini M, Statti G, Vivacqua A, Gabriele S, Rago V, Loizzo M, Menichini F, Amdò S (2002) Estrogenic and antiproliferative activities of isoliquiritigenin in MCF7 breast cancer cells. J Steroid Biochem 82:315–322

    Article  CAS  Google Scholar 

  38. Chen G, Zhu L, Liu Y, Zhou Q, Chen H, Yang J (2009) Isoliquiritigenin, a flavonoid from licorice, plays a dual role in regulating gastrointestinal motility in vitro and in vivo. Phytother Res 23:498–506

    Article  PubMed  CAS  Google Scholar 

  39. Hsia SM, Shieh TM, Shih YH (2012) Effects of isoliquiritigenin (ISL) on VEGF secretion in human breast cancer cell line MDA-MB-231. Cancer Res 72:1991–1991

    Article  Google Scholar 

  40. Wang KL, Hsia SM, Chan CJ, Chang FY, Huang CY, Bau DT, Wang PS (2013) Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin Ther Tar 17:337–349

    Article  CAS  Google Scholar 

  41. Jung SK, Lee MH, Kim JE, Singh P, Lee SY, Jeong CH, Lim TG, Chen H, Chi YI, Kundu JK (2014) Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J Biol Chem 289:35839–35848

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Di Cesare A, Di Meglio P, Nestle FO (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 129:1339–1350

    Article  PubMed  CAS  Google Scholar 

  43. Pietrzak AT, Zalewska A, Chodorowska G, Krasowska D, Michalak-Stoma A, Nockowski P, Osemlak P, Paszkowski T, Roliński JM (2008) Cytokines and anticytokines in psoriasis. Clin Chim Acta 394:7–21

    Article  PubMed  CAS  Google Scholar 

  44. Perera GK, Di Meglio P, Nestle FO (2012) Psoriasis. Annu Rev Pathol-Mech Dis 7:385–422

    Article  CAS  Google Scholar 

  45. Goldminz AM, Au SC, Kim N, Gottlieb AB, Lizzul PF (2013) NF-κB: an essential transcription factor in psoriasis. J Dermatol Sci 69:89–94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xiu Teng for the human keratinocyte cell line HaCaT and helpful suggestions in the vitro studies, Congcong Shen for excellent discussions, Xuewen Jin for real-time quantitative PCR analysis and expert suggestions, Weiyong Xu and Juan He for excellent technical assistance in HE staining, Fanghua Li for immunohistochemistry analysis, and Min Wu and John Yun-Chung Chen for the revision of the manuscript.

Conflict of interest

No potential conflicts of interest were disclosed.

Grant support

This study was supported by National Science and Technology Major Projects (No. 2012ZX09103-301-045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian Jiang or Jinliang Yang.

Additional information

Yangping Wu and Xiangzheng Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 644 kb

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, X., Ge, X. et al. Isoliquiritigenin prevents the progression of psoriasis-like symptoms by inhibiting NF-κB and proinflammatory cytokines. J Mol Med 94, 195–206 (2016). https://doi.org/10.1007/s00109-015-1338-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1338-3

Keywords

Navigation