Skip to main content

Advertisement

Log in

Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder associated with amyloid accumulation and autophagic changes. Parkin is an E3 ubiquitin ligase involved in proteasomal and autophagic clearance. We previously demonstrated decreased parkin solubility and interaction with the key autophagy enzyme beclin-1 in AD, but tyrosine kinase inhibition restored parkin–beclin-1 interaction. In the current studies, we determined the mechanisms of nilotinib-induced parkin–beclin-1 interaction, which leads to amyloid clearance. Nilotinib increased endogenous parkin levels and ubiquitination, which may enhance parkin recycling via the proteasome, leading to increased activity and interaction with beclin-1. Parkin solubility was decreased and autophagy was altered in amyloid expressing mice, suggesting that amyloid stress affects parkin stability, leading to failure of protein clearance via the lysosome. Isolation of autophagic vacuoles revealed amyloid and parkin accumulation in autophagic compartments but nilotinib decreased insoluble parkin levels and facilitated amyloid deposition into lysosomes in wild type, but not parkin−/− mice, further underscoring an essential role for endogenous parkin in amyloid clearance. These results suggest that nilotinib boosts the autophagic machinery, leading to increased level of endogenous parkin that undergoes ubiquitination and interacts with beclin-1 to facilitate amyloid clearance. These data suggest that nilotinib-mediated autophagic changes may trigger parkin response via increased protein levels, providing a therapeutic strategy to reduce Aβ and Tau in AD.

Key message

  • Parkin solubility (stability) is decreased in AD and APP transgenic mice.

  • Nilotinib-induced autophagic changes increase endogenous parkin level.

  • Increased parkin level leads to ubiquitination and proteasomal recycling.

  • Re-cycling decreases insoluble parkin and increases parkin–beclin-1 interaction.

  • Beclin-1–parkin interaction enhances amyloid clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6

Similar content being viewed by others

References

  1. Cook DG, Forman MS, Sung JC, Leight S, Kolson DL, Iwatsubo T, Lee VM, Doms RW (1997) Alzheimer's A beta(1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat Med 3:1021–1023

    Article  PubMed  CAS  Google Scholar 

  2. Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P, Xu H (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc Natl Acad Sci U S A 96:742–747

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Skovronsky DM, Doms RW, Lee VM (1998) Detection of a novel intraneuronal pool of insoluble amyloid beta protein that accumulates with time in culture. J Cell Biol 141:1031–1039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Xu H, Sweeney D, Wang R, Thinakaran G, Lo AC, Sisodia SS, Greengard P, Gandy S (1997) Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc Natl Acad Sci U S A 94:3748–3752

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Wang JY (2000) Regulation of cell death by the Abl tyrosine kinase. Oncogene 19:5643–5650

    Article  PubMed  CAS  Google Scholar 

  6. Tremblay MA, Acker CM, Davies P (2010) Tau phosphorylated at tyrosine 394 is found in Alzheimer's disease tangles and can be a product of the Abl-related kinase, Arg. J Alzheimers Dis 19:721–733

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Schlatterer SD, Acker CM, Davies P (2011) c-Abl in neurodegenerative disease. J Mol Neurosci. doi:10.1007/s12031-011-9588-1

    PubMed Central  PubMed  Google Scholar 

  8. Derkinderen P, Scales TM, Hanger DP, Leung KY, Byers HL, Ward MA, Lenz C, Price C, Bird IN, Perera T et al (2005) Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci 25:6584–6593

    Article  PubMed  CAS  Google Scholar 

  9. Alvarez AR, Sandoval PC, Leal NR, Castro PU, Kosik KS (2004) Activation of the neuronal c-Abl tyrosine kinase by amyloid-beta-peptide and reactive oxygen species. Neurobiol Dis 17:326–336

    Article  PubMed  CAS  Google Scholar 

  10. Cancino GI, Toledo EM, Leal NR, Hernandez DE, Yevenes LF, Inestrosa NC, Alvarez AR (2008) STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer's beta-amyloid deposits. Brain 131:2425–2442

    Article  PubMed  Google Scholar 

  11. Hebron ML, Lonskaya I, Moussa CE (2013) Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson's disease models. Hum Mol Genet 22:3315–3328

    Article  PubMed  CAS  Google Scholar 

  12. Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, Roberts JL, Kahle PJ, Clark RA, Li S (2011) Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease. J Neurosci 31:157–163

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK, Moussa CE (2012) Diminished parkin solubility and co-localization with intraneuronal amyloid-beta are associated with autophagic defects in Alzheimer's disease. J Alzheimers Dis. doi:10.3233/JAD-2012-121141

    Google Scholar 

  14. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  PubMed  CAS  Google Scholar 

  15. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed Central  PubMed  Google Scholar 

  16. Park J, Kim Y, Chung J (2009) Mitochondrial dysfunction and Parkinson's disease genes: insights from Drosophila. Dis Model Mech 2:336–340

    Article  PubMed  CAS  Google Scholar 

  17. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107:378–383

    Article  PubMed Central  PubMed  Google Scholar 

  18. Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE (2011) Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet 20:2091–2102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Deremer DL, Ustun C, Natarajan K (2008) Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther 30:1956–1975

    Article  PubMed  CAS  Google Scholar 

  20. Skorski T (2011) BCR-ABL1 kinase: hunting an elusive target with new weapons. Chem Biol 18:1352–1353

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Mahon FX, Hayette S, Lagarde V, Belloc F, Turcq B, Nicolini F, Belanger C, Manley PW, Leroy C, Etienne G et al (2008) Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res 68:9809–9816

    Article  PubMed  CAS  Google Scholar 

  22. Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE (2013) Tyrosine kinase inhibition increases functional parkin–Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med. doi:10.1002/emmm.201302771

    PubMed Central  PubMed  Google Scholar 

  23. Lonskaya I, Hebron ML, Algarzae NK, Desforges N, Moussa CE (2012) Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson's disease. Neuroscience. doi:10.1016/j.neuroscience.2012.12.018

    PubMed  Google Scholar 

  24. Rebeck GW, Hoe HS, Moussa CE (2010) Beta-amyloid1-42 gene transfer model exhibits intraneuronal amyloid, gliosis, tau phosphorylation, and neuronal loss. J Biol Chem 285:7440–7446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Burns MP, Zhang L, Rebeck GW, Querfurth HW, Moussa CE (2009) Parkin promotes intracellular Abeta1-42 clearance. Hum Mol Genet 18:3206–3216

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Hebron ML, Lonskaya I, Sharpe K, Weerasinghe PP, Algarzae NK, Shekoyan AR, Moussa CE (2013) Parkin ubiquitinates Tar-DNA binding protein-43 (TDP-43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6). J Biol Chem 288:4103–4115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635

    Article  PubMed  CAS  Google Scholar 

  28. Marzella L, Ahlberg J, Glaumann H (1982) Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J Cell Biol 93:144–154

    Article  PubMed  CAS  Google Scholar 

  29. Davis J, Xu F, Deane R, Romanov G, Previti ML, Zeigler K, Zlokovic BV, Van Nostrand WE (2004) Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem 279:20296–20306

    Article  PubMed  CAS  Google Scholar 

  30. Khandelwal PJ, Dumanis SB, Feng LR, Maguire-Zeiss K, Rebeck G, Lashuel HA, Moussa CE (2010) Parkinson-related parkin reduces alpha-Synuclein phosphorylation in a gene transfer model. Mol Neurodegener 5:47

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Rosen KM, Moussa CE, Lee HK, Kumar P, Kitada T, Qin G, Fu Q, Querfurth HW (2010) Parkin reverses intracellular beta-amyloid accumulation and its negative effects on proteasome function. J Neurosci Res 88:167–178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM (2010) Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proc Natl Acad Sci U S A 107:16691–16696

    Article  PubMed Central  PubMed  Google Scholar 

  33. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K et al (2013) Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 4:1982

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 200:163–172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE (2011) UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474:105–108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, Kimura M, Suzuki N, Uchiyama S, Tanaka K, Matsuda N (2013) Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J Biol Chem 288:22019–22032

    Article  PubMed  CAS  Google Scholar 

  37. Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N, Barber KR, Aguirre JD, Burchell L, Purkiss A, Walden H et al (2013) A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat Commun 4:1983

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Zheng X, Hunter T (2013) Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res 23:886–897

    Article  PubMed  CAS  Google Scholar 

  39. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Wauer T, Komander D (2013) Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 32(15):2099–2112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Trempe JF, Sauve V, Grenier K, Seirafi M, Tang MY, Menade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G et al (2013) Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340:1451–1455

    Article  PubMed  CAS  Google Scholar 

  42. Rodriguez-Navarro JA, Gomez A, Rodal I, Perucho J, Martinez A, Furio V, Ampuero I, Casarejos MJ, Solano RM, de Yebenes JG et al (2008) Parkin deletion causes cerebral and systemic amyloidosis in human mutated tau over-expressing mice. Hum Mol Genet 17:3128–3143

    Article  PubMed  CAS  Google Scholar 

  43. Perucho J, Casarejos MJ, Rubio I, Rodriguez-Navarro JA, Gomez A, Ampuero I, Rodal I, Solano RM, Carro E, Garcia de Yebenes J et al (2010) The effects of parkin suppression on the behaviour, amyloid processing, and cell survival in APP mutant transgenic mice. Exp Neurol 221:54–67

    Article  PubMed  CAS  Google Scholar 

  44. Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome–autophagy pathway. Autophagy 4:85–87

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Mizuno Y, Hattori N, Mori H, Suzuki T, Tanaka K (2001) Parkin and Parkinson's disease. Curr Opin Neurol 14:477–482

    Article  PubMed  CAS  Google Scholar 

  46. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by NIH grant NIA 30378, Georgetown University funding and Merck & Co funds to Charbel E-H Moussa. The authors would like to thank Dr. Jim Driver from the University of Montana for his support in the EM studies.

Disclosure statements

The authors have read the manuscript and declare no conflict of interest whatsoever.

Dr. Charbel Moussa has a pending application to use nilotinib and bosutinib as a treatment for neurodegenerative diseases. The PCT application number PCT/US13/039283 was filed on May 2, 2013 and claims priority to two provisional patent applications filed on May 2, 2012 and March 1, 2013. The title is “treating neural diseases with tyrosine kinase inhibitors”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charbel E-H Moussa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lonskaya, I., Hebron, M.L., Desforges, N.M. et al. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J Mol Med 92, 373–386 (2014). https://doi.org/10.1007/s00109-013-1112-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1112-3

Keywords

Navigation