Skip to main content

Advertisement

Log in

Gadd45β is transcriptionally activated by p53 via p38α-mediated phosphorylation during myocardial ischemic injury

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Growth arrest and DNA damage-inducible 45β (Gadd45β) have been shown to play a role in inducing cardiomyocyte apoptosis under ischemia/anoxia. The well-known transcription factor p53 is known to cause apoptosis in cardiomyocytes under ischemia. Based on the common role of Gadd45β and p53 in ischemia-induced apoptosis, we investigated whether p53 is involved in the mechanisms responsible for Gadd45β expression in both in vitro and in vivo models of ischemic heart injury. A chromatin immunoprecipitation assay revealed direct binding of p53 to the Gadd45β promoter region during anoxia, and this binding was confirmed by surface plasmon resonance imaging. In rat heart-derived H9c2 cells, silencing of p53 abrogated the increase of Gadd45β promoter-luciferase reporter (Gadd45β-Luc) activity and the expression of Gadd45β under anoxia and overexpression of p53 enhanced Gadd45β-Luc activity and Gadd45β expression. Gadd45β mRNA and protein expression were significantly inhibited by p53 siRNA in a rat ischemic heart model. In addition, p38α-mediated phophorylation of p53 at both Ser15 and Ser20 was shown to be essential for the expression of Gadd45β mRNA and protein during anoxia. These results reveal the p38α-p53-Gadd45β axis as a novel signaling module in the anoxia-induced apoptotic death pathway. In conclusion, this study provides molecular evidence that Gadd45β is a novel downstream target gene of p53 under ischemia/anoxia and suggests the therapeutic potential of targeting Gadd45β as a treatment of ischemic heart injury.

Key message

  • Gadd45β is transcriptionally induced by p53 via direct binding under ischemia/anoxia.

  • The induction of Gadd45β expression requires the p53 phosphorylation at Ser15/Ser20.

  • p38α mediates the p53 phosphorylation at Ser15/Ser20 and the Gadd45β expression.

  • Ischemia/anoxia-p38α-p53-Gadd45β axis serves as a novel apoptotic signaling module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther 7(A):268–276

    PubMed  CAS  Google Scholar 

  2. Fornace AJ Jr, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, Holbrook NJ (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9(10):4196–4203

    PubMed  CAS  Google Scholar 

  3. Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace AJ Jr (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol 14:2361–2371

    Article  PubMed  CAS  Google Scholar 

  4. Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530

    Article  PubMed  CAS  Google Scholar 

  5. Zhang W, Bae I, Krishnaraju K, Azam N, Fan W, Smith K, Hoffman B, Liebermann DA (1999) CR6: a third member in the MyD118 and Gadd45 gene family which functions in negative growth control. Oncogene 18:4899–4907

    Article  PubMed  CAS  Google Scholar 

  6. Liebermann DA, Hoffman B (2007) Gadd45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis 39:329–335

    Article  PubMed  CAS  Google Scholar 

  7. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    Article  PubMed  Google Scholar 

  8. Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr, Liebermann DA, Bottinger EP, Roberts AB (2003) Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45β through p38 activation. J Biol Chem 278:43001–43007

    Article  PubMed  CAS  Google Scholar 

  9. Beadling C, Johnson KW, Smith KA (1993) Isolation of interleukin-2-induced immediate-early genes. Proc Natl Acad Sci USA 90:2719–2723

    Article  PubMed  CAS  Google Scholar 

  10. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  11. Carrier F, Smith ML, Bae I, Kilpatrick KE, Lansing TJ, Chen CY, Engelstein M, Friend SH, Henner WD, Gilmer TM et al (1994) Characterization of human Gadd45, a p53-regulated protein. J Biol Chem 269(51):32672–32677

    PubMed  CAS  Google Scholar 

  12. Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14:536–548

    Article  PubMed  Google Scholar 

  13. Kim MY, Seo EJ, Lee DH, Kim EJ, Kim HS, Cho HY, Chung EY, Lee SH, Baik EJ, Moon CH et al (2010) Gadd45beta is a novel mediator of cardiomyocyte apoptosis induced by ischaemia/hypoxia. Cardiovasc Res 87:119–126

    Article  PubMed  CAS  Google Scholar 

  14. Kim KY, Choi HJ, Kim BG, Park YR, Kim JS, Ryu JH, Soh Y (2008) Hexane soluble fraction of Chungpesagan-tang exhibits protective effect against hypoxia/reoxygenation-induced N2a cell damage. Biomolecules & Therapeutics 16:377–384

    Article  Google Scholar 

  15. Lee KA, Lee SH, Lee YJ, Baeg SM, Shim JH (2012) Hesperidin induces apoptosis by inhibiting Sp1 and its regulatory protein in MSTO-211H cells. Biomolecules & Therapeutics 20:273–279

    Article  CAS  Google Scholar 

  16. Kretschmann E (1971) Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen. Z Phys 241:313–324

    Article  CAS  Google Scholar 

  17. Nie L, Vázquez AE, Yamoah EN (2009) Identification of transcription factor-DNA interactions using chromatin immunoprecipitation assays. Methods Mol Biol 493:311–321

    Article  PubMed  CAS  Google Scholar 

  18. Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950

    Article  PubMed  CAS  Google Scholar 

  19. Kimata M, Matoba S, Iwai-Kanai E, Nakamura H, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Mita Y, Okigaki M et al (2010) p53 and TIGAR regulate cardiac myocyte energy homeostasis under hypoxic stress. Am J Physiol Heart Circ Physiol 299:H1908–H1916

    Article  PubMed  CAS  Google Scholar 

  20. Amano T, Nakamizo A, Mishra SK, Gumin J, Shinojima N, Sawaya R, Lang FF (2009) Simultaneous phosphorylation of p53 at serine 15 and 20 induces apoptosis in human glioma cells by increasing expression of pro-apoptotic genes. J Neurooncol 92:357–371

    Article  PubMed  CAS  Google Scholar 

  21. Shi Q, Le X, Abbruzzese JL, Peng Z, Qian CN, Tang H, Xiong Q, Wang B, Li XC, Xie K (2001) Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res 61:4143–4154

    PubMed  CAS  Google Scholar 

  22. Liu P, Xu B, Cavalieri TA, Hock CE (2006) Pifithrin-alpha attenuates p53-mediated apoptosis and improves cardiac function in response to myocardial ischemia/reperfusion in aged rats. Shock 26:608–614

    Article  PubMed  CAS  Google Scholar 

  23. Qiu W, David D, Zhou B, Chu PG, Zhang B, Wu M, Xiao J, Han T, Zhu Z, Wang T et al (2003) Down-regulation of growth arrest DNA damage-inducible gene 45beta expression is associated with human hepatocellular carcinoma. Am J Pathol 162:1961–1974

    Article  PubMed  CAS  Google Scholar 

  24. Zazzeroni F, Papa S, Algeciras-Schimnich A, Alvarez K, Melis T, Bubici C, Majewski N, Hay N, De Smaele E, Peter ME et al (2003) Gadd45 beta mediates the protective effects of CD40 costimulation against Fas-induced apoptosis. Blood 102:3270–3279

    Article  PubMed  CAS  Google Scholar 

  25. Naito AT, Okada S, Minamino T, Iwanaga K, Liu ML, Sumida T, Nomura S, Sahara N, Mizoroki T, Takashima A et al (2010) Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circ Res 106(11):1692–1702

    Article  PubMed  CAS  Google Scholar 

  26. Kaku S, Iwahashi Y, Kuraishi A, Albor A, Yamagishi T, Nakaike S, Kulesz-Martin M (2001) Binding to the naturally occurring double p53 binding site of the Mdm2 promoter alleviates the requirement for p53 C-terminal activation. Nucleic Acids Res 29:1989–1993

    Article  PubMed  CAS  Google Scholar 

  27. Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Natl Acad Sci U S A 107:19290–19295

    Article  PubMed  CAS  Google Scholar 

  28. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96:13777–13782

    Article  PubMed  CAS  Google Scholar 

  29. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273:33048–33053

    Article  PubMed  CAS  Google Scholar 

  30. Liu H, Pedram A, Kim JK (2011) Oestrogen prevents cardiomyocyte apoptosis by suppressing p38α-mediated activation of p53 and by down-regulating p53 inhibition on p38β. Cardiovasc Res 89:119–128

    Article  PubMed  CAS  Google Scholar 

  31. Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331:851–858

    Article  PubMed  CAS  Google Scholar 

  32. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  PubMed  CAS  Google Scholar 

  33. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7

    Article  PubMed  CAS  Google Scholar 

  34. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Su-Jae Lee (Hanyang University, Seoul, Korea) for providing the p38α plasmid used in this study and Dr. Chang-Hoon Kim (CHA University, Sungnam, Korea) for technical support. This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ00900704201201 and No. PJ009074), Rural Development Administration, Republic of Korea. This work was also supported by the Bio and Medical Technology Development Program (2011–0019397) of the National Research Foundation funded by the Korean Government (MEST) and Bio-industry Technology Development Program (111093–3), Ministry for Food, Agriculture, Forestry, and Fisheries, Republic of Korea.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Sook Jung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YA., Kim, MY., Yu, H.Y. et al. Gadd45β is transcriptionally activated by p53 via p38α-mediated phosphorylation during myocardial ischemic injury. J Mol Med 91, 1303–1313 (2013). https://doi.org/10.1007/s00109-013-1070-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1070-9

Keywords

Navigation