Skip to main content

Advertisement

Log in

The enzymatic activity of the VEGFR2 receptor for the biosynthesis of dinucleoside polyphosphates

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The group of dinucleoside polyphosphates encompasses a large number of molecules consisting of two nucleosides which are connected by a phosphate chain of variable length. While the receptors activated by dinucleoside polyphosphates as well as their degradation have been studied in detail, its biosynthesis has not been elucidated so far. Since endothelial cells released the dinucleoside polyphosphate uridine adenosine tetraphosphate (Up4A), we tested cytosolic proteins of human endothelial cells obtained from dermal vessels elicited for enzymatic activity. When incubated with ADP and UDP, these cells showed increasing concentrations of Up4A. The underlying enzyme was isolated by chromatography and the mass spectrometric analysis revealed that the enzymatic activity was caused by the vascular endothelial growth factor receptor 2 (VEGFR2). Since VEGFR2 but neither VEGFR1 nor VEGFR3 were capable to synthesise dinucleoside polyphosphates, Tyr-1175 of VEGFR2 is most likely essential for the enzymatic activity of interest. Further, VEGFR2-containing cells like HepG2, THP-1 and RAW264.7 were capable of synthesising dinucleoside polyphosphates. VEGFR2-transfected HEK 293T/17 but not native HEK 293T/17 cells synthesised dinucleoside polyphosphates in vivo too. The simultaneous biosynthesis of dinucleoside polyphosphates could amplify the response to VEGF, since dinucleoside polyphosphates induce cellular growth via P2Y purinergic receptors. Thus the biosynthesis of dinucleoside polyphosphates by VEGFR2 may enhance the proliferative response to VEGF. Given that VEGFR2 is primarily expressed in endothelial cells, the biosynthesis of dinucleoside polyphosphates is mainly located in the vascular system. Since the vasculature is also the main site of action of dinucleoside polyphosphates, activating vascular purinoceptors, blood vessels appear as an autocrine system with respect to dinucleoside polyphosphates. We conclude that VEGFR2 receptor is capable of synthesising dinucleoside polyphosphates. These mediators may modulate the effects of VEGFR2 due to their proliferative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wiedon A, Tolle M, Bastine J, Schuchardt M, Huang T, Jankowski V, Jankowski J, Zidek W, van der Giet M (2012) Uridine adenosine tetraphosphate (Up4A) is a strong inductor of smooth muscle cell migration via activation of the P2Y2 receptor and cross-communication to the PDGF receptor. Biochem Biophys Res Commun 417:1035–1040

    Article  PubMed  CAS  Google Scholar 

  2. Jankowski V, Guenthner T, Herget-Rosenthal S, Zidek W, Jankowski J (2009) Dinucleoside polyphosphates and uremia. Semin Dial 22:396–399

    Article  PubMed  Google Scholar 

  3. Jankowski V, van der Giet M, Mischak H, Morgan M, Zidek W, Jankowski J (2009) Dinucleoside polyphosphates: strong endogenous agonists of the purinergic system. Br J Pharmacol 157:1142–1153

    Article  PubMed  CAS  Google Scholar 

  4. Rapaport E, Zamecnik PC (1976) Presence of diadenosine 5′,5″ -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Proc Natl Acad Sci USA 73:3984–3988

    Article  PubMed  CAS  Google Scholar 

  5. Flodgaard H, Klenow H (1982) Abundant amounts of diadenosine 5′,5″′-P1, P4-tetraphosphate are present and releasable, but metabolically inactive, in human platelets. Biochem J 208:737–742

    PubMed  CAS  Google Scholar 

  6. Lüthje J, Ogilvie A (1983) The presence of diadenosine 5′,5′″-P1, P3-triphosphate (Ap3A) in human platelets. Biochem Biophys Res Commun 115:253–260

    Article  PubMed  Google Scholar 

  7. Jankowski J, Tepel M, van der Giet M, Tente IM, Henning L, Junker R, Zidek W, Schlüter H (1999) Identification and characterization of P1, P7-diadenosine-5′-heptaphosphate from human platelets. J Biol Chem 274:23926–23931

    Article  PubMed  CAS  Google Scholar 

  8. Schlüter H, Offers E, Brüggemann G, van der Giet M, Tepel M, Nordhoff E, Karas M, Spieker C, Witzel H, Zidek W (1994) Diadenosine phosphates and the physiological control of blood pressure. Nature 367:186–188

    Article  PubMed  Google Scholar 

  9. Yegutkin G, Jankowski J, Jalkanen S, Gunthner T, Zidek W, Jankowski V (2008) Dinucleotide polyphosphates contribute to purinergic signalling via inhibition of adenylate kinase activity. Biosci Rep 28:189–194

    Article  PubMed  CAS  Google Scholar 

  10. Yelovitch S, Camden J, Weisman GA, Fischer B (2012) Boranophosphate isoster controls P2Y-receptor subtype selectivity and metabolic stability of dinucleoside polyphosphate analogues. J Med Chem 55:437–448. doi:10.1021/jm2013198

    Article  PubMed  CAS  Google Scholar 

  11. Matsumoto T, Tostes RC, Webb RC (2012) Alterations in vasoconstrictor responses to the endothelium-derived contracting factor uridine adenosine tetraphosphate are region specific in DOCA-salt hypertensive rats. Pharmacol Res 65:81–90

    Article  PubMed  CAS  Google Scholar 

  12. Gui Y, He G, Walsh MP, Zheng XL (2011) Signaling mechanisms mediating uridine adenosine tetraphosphate-induced proliferation of human vascular smooth muscle cells. J Cardiovasc Pharmacol 58:654–662. doi:10.1097/FJC.0b013e318231e929

    Article  PubMed  CAS  Google Scholar 

  13. Jankowski V, Tölle M, Vanholder R, Schönfelder G, van der Giet M, Henning L, Schlüter H, Paul M, Zidek W, Jankowski J (2005) Identification of uridine adenosine tetraphosphate (Up4A) as an endothelium-derived vasoconstrictive factor. Nat Med 11:223–227

    Article  PubMed  CAS  Google Scholar 

  14. Zhou Z, Merkus D, Cheng C, Duckers HJ, Jan Danser AH, Duncker DJ (2012) Uridine adenosine tetraphosphate is a novel vasodilator in the coronary microcirculation which acts through purinergic P1 but not P2 receptors. Pharmacol Res 67:10–17

    Article  PubMed  Google Scholar 

  15. Matsumoto T, Tostes RC, Webb RC (2011) The role of uridine adenosine tetraphosphate in the vascular system. Adv Pharmacol Sci. doi:10.1155/2011/435132

    PubMed  Google Scholar 

  16. Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J, Furkert J, Oksche A, Krause E, Tran TN et al (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol 27:297–302

    Article  PubMed  CAS  Google Scholar 

  17. Gobom J, Schuerenberg M, Mueller M, Theiss D, Lehrach H, Nordhoff E (2001) Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Anal Chem 73:434–438

    Article  PubMed  CAS  Google Scholar 

  18. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  19. Consortium TU (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–219

    Article  Google Scholar 

  20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  21. Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J (2000) Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 14:2610–2622

    Article  PubMed  CAS  Google Scholar 

  22. Tanaka K, Kawakami T, Tateishi K, Yashiroda H, Chiba T (2001) Control of IkappaBalpha proteolysis by the ubiquitin-proteasome pathway. Biochimie 83:351–356

    Article  PubMed  CAS  Google Scholar 

  23. Ma DJ, Li SJ, Wang LS, Dai J, Zhao SL, Zeng R (2009) Temporal and spatial profiling of nuclei-associated proteins upon TNF-alpha/NF-kappaB signaling. Cell Res 19:651–664

    Article  PubMed  CAS  Google Scholar 

  24. Zhu S, Browning DD, White RE, Fulton D, Barman SA (2009) Mutation of protein kinase C phosphorylation site S1076 on alpha-subunits affects BK(Ca) channel activity in HEK-293 cells. Am J Physiol Lung Cell Mol Physiol 297:L758–766

    Article  PubMed  CAS  Google Scholar 

  25. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A 101:13489–13494. doi:10.1073/pnas.0405659101

    Article  PubMed  CAS  Google Scholar 

  26. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66:11851–11858

    Article  PubMed  CAS  Google Scholar 

  27. Zhang S, Cao Z, Tian H, Shen G, Ma Y, Xie H, Liu Y, Zhao C, Deng S, Yang Y et al (2011) SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res 17:4439–4450

    Article  PubMed  CAS  Google Scholar 

  28. Spiekermann K, Faber F, Voswinckel R, Hiddemann W (2002) The protein tyrosine kinase inhibitor SU5614 inhibits VEGF-induced endothelial cell sprouting and induces growth arrest and apoptosis by inhibition of c-kit in AML cells. Exp Hematol 30:767–773

    Article  PubMed  CAS  Google Scholar 

  29. Dineen SP, Lynn KD, Holloway SE, Miller AF, Sullivan JP, Shames DS, Beck AW, Barnett CC, Fleming JB, Brekken RA (2008) Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice. Cancer Res 68:4340–4346

    Article  PubMed  CAS  Google Scholar 

  30. Girling JE, Rogers PA (2009) Regulation of endometrial vascular remodelling: role of the vascular endothelial growth factor family and the angiopoietin-TIE signalling system. Reproduction 138:883–893

    Article  PubMed  CAS  Google Scholar 

  31. Sase H, Watabe T, Kawasaki K, Miyazono K, Miyazawa K (2009) VEGFR2-PLCgamma1 axis is essential for endothelial specification of VEGFR2+ vascular progenitor cells. J Cell Sci 122:3303–3311

    Article  PubMed  CAS  Google Scholar 

  32. Holmqvist K, Cross MJ, Rolny C, Hagerkvist R, Rahimi N, Matsumoto T, Claesson-Welsh L, Welsh M (2004) The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279:22267–22275. doi:10.1074/jbc.M312729200

    Article  PubMed  CAS  Google Scholar 

  33. Jankowski V, Meyer AA, Schlattmann P, Gui Y, Zheng XL, Stamcou I, Radtke K, Anh Tran TN, van der Giet M, Tölle M et al (2007) Increased Uridine Adenosine Tetraphosphate Concentrations in Plasma of Juvenile Hypertensives. Arterioscler Thromb Vasc Biol 27:1776–1781

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the German Research Foundation (DFG, Ja-972 /11-1/2), a grant from the Federal Ministry of Education and Research (01GR080701/09), grant FP7-HEALTH-2009-2.4.5-2 to “SysKid” (grant agreement 241544), “Mascara” (grant agreement 278249) from the European Union and by the Peter und Traudl Engelhorn Stiftung. We thank B. Egbers and D. Jacobi for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jankowski, V., Schulz, A., Kretschmer, A. et al. The enzymatic activity of the VEGFR2 receptor for the biosynthesis of dinucleoside polyphosphates. J Mol Med 91, 1095–1107 (2013). https://doi.org/10.1007/s00109-013-1036-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1036-y

Keywords

Navigation