Skip to main content

Advertisement

Log in

Evolutionary molecular medicine

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Pathogens are shaped by selection, but they are not diseases themselves, they are causes of diseases. Some alleles that cause disease are selected for, e.g., sickle-cell hemoglobin (HbS). However, HbS is not a disease, it is an allele that causes disease when paired with another HbS allele.

References

  1. Nesse RM, Williams GC (1994) Why we get sick: the new science of Darwinian medicine. Times Books, New York

    Google Scholar 

  2. Williams GC, Nesse RM (1991) The dawn of Darwinian medicine. Q Rev Biol 66:1–22

    Article  PubMed  CAS  Google Scholar 

  3. Nesse RM, Stearns SC (2008) The great opportunity: evolutionary applications to medicine and public health. Evol Appl 1:28–48

    Article  Google Scholar 

  4. Stearns SC (ed) (1999) Evolution in health and disease. Oxford University Press, Oxford

    Google Scholar 

  5. Gluckman P, Beedle A, Hanson M (2009) Principles of evolutionary medicine. Oxford University Press, Oxford

    Google Scholar 

  6. Stearns SC, Koella JC (eds) (2008) Evolution in health and disease, 2nd edn. Oxford University Press, New York

    Google Scholar 

  7. Perlman RL (2011) Evolutionary biology: a basic science for medicine in the 21st century. Perspect Biol Med 54:75–88. doi:10.1353/pbm.2011.0012

    Article  PubMed  Google Scholar 

  8. Gregory TR (2008) The evolution of complex organs. Evol: Educ Outreach 1:358–389

    Article  Google Scholar 

  9. Orr HA (2009) Fitness and its role in evolutionary genetics. Nat Rev Genet 10:531–539

    Article  PubMed  CAS  Google Scholar 

  10. Weiss KM, Buchanan A (2004) Genetics and the logic of evolution. Wiley-Liss, Hoboken

    Book  Google Scholar 

  11. Maynard Smith J (1998) Evolutionary genetics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  12. Crespi BJ (2011) The emergence of human-evolutionary medical genomics. Evolutionary Applications 4:292–314. doi:10.1111/j.1752-4571.2010.00156.x

    Article  Google Scholar 

  13. Fox CW, Wolf JB (2006) Evolutionary genetics: concepts and case studies. Oxford University Press, New York

    Google Scholar 

  14. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed  CAS  Google Scholar 

  15. Finch CE, Sapolsky RM (1999) The evolution of alzheimer disease, the reproductive schedule, and apoe isoforms. Neurobiol Aging 20:407–428

    Article  PubMed  CAS  Google Scholar 

  16. Childs B (1999) Genetic medicine: a logic of disease. Johns Hopkins University Press, Baltimore

    Google Scholar 

  17. Childs B, Wiener C, Valle D (2005) A science of the individual: implications for a medical school curriculum. Annu Rev Genomics Hum Genet 6:313–330

    Article  PubMed  CAS  Google Scholar 

  18. Nesse RM, Dawkins R (2010) Evolution: medicine’s most basic science. In: Warrell DA, Cox TM, Firth JD, Benz EJJ (eds) Oxford textbook of medicine, 5th edn. Oxford University Press, Oxford, pp 12–15

    Google Scholar 

  19. Nesse RM, Bergstrom CT, Ellison PT, Flier JS, Gluckman P, Govindaraju DR, Niethammer D, Omenn GS, Perlman RL, Schwartz MD et al (2010) Making evolutionary biology a basic science for medicine. Proc Natl Acad Sci USA 107(Suppl 1):1800–1807. doi:10.1073/pnas.0906224106

    Article  PubMed  CAS  Google Scholar 

  20. Nesse RM (2005) Maladaptation and natural selection. Q Rev Biol 80:62–70

    Article  PubMed  Google Scholar 

  21. Eaton SB, Cordain L, Eaton SB III (2001) An evolutionary foundation for health promotion. World Rev Nutr Diet 90:5–12

    Article  PubMed  CAS  Google Scholar 

  22. Eaton SB, Strassman BI, Nesse RM, Neel JV, Ewald PW, Williams GC, Weder AB, Eaton SB III, Lindeberg S, Konner MJ et al (2002) Evolutionary health promotion. Prev Med 34:109–118

    Article  PubMed  Google Scholar 

  23. Rook G (ed) (2009) The hygiene hypothesis and Darwinian medicine. Birkhauser Basel, Boston

    Google Scholar 

  24. Correale J, Farez M (2007) Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 61:97–108

    Article  PubMed  CAS  Google Scholar 

  25. Elliott DE, Summers RW, Weinstock JV (2007) Helminths as governors of immune-mediated inflammation. Int J Parasit 37:457–464

    Article  CAS  Google Scholar 

  26. Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M, Yum J, Kim YJ, Lee HK, Cortese JF, Wirth DF et al (2012) Halofuginone and other febrifugine derivatives inhibit prolyl-trna synthetase. Nat Chem Biol 8:311–317. doi:10.1038/nchembio.790

    Article  PubMed  CAS  Google Scholar 

  27. Nesse RM, Berridge KC (1997) Psychoactive drug use in evolutionary perspective. Science 278:63–66

    Article  PubMed  CAS  Google Scholar 

  28. Weiss KM (2008) Tilting at quixotic trait loci (QTL): an evolutionary perspective on genetic causation. Genetics 179:1741–1756. doi:10.1534/genetics.108.094128

    Article  PubMed  Google Scholar 

  29. Bulik CM, Sullivan PF, Tozzi F, Furberg H, Lichtenstein P, Pedersen NL (2006) Prevalence, heritability, and prospective risk factors for anorexia nervosa. Arch Gen Psychiatry 63:305–312. doi:10.1001/archpsyc.63.3.305

    Article  PubMed  Google Scholar 

  30. Turkheimer E (1991) Individual and group differences in adoption studies of IQ. Psychol Bull 110:392–405

    Article  Google Scholar 

  31. Holmes EC (2004) Adaptation and immunity. PLoS Biol 2:e307

    Article  PubMed  CAS  Google Scholar 

  32. Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F, Giusti F, Dosik MH, Hayes DF, Gitlin SD et al (2008) Human endogenous retrovirus k (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol 82:9329–9336. doi:10.1128/JVI.00646-08

    Article  PubMed  CAS  Google Scholar 

  33. Schmid-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, USA

    Google Scholar 

  34. Finch CE (2009) Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci USA 107(Suppl 1):1718–1724. doi:10.1073/pnas.0909606106

    PubMed  Google Scholar 

  35. Turke PW (2008) Williams's theory of the evolution of senescence: still useful at fifty. Q Rev Biol 83:243–256

    Article  PubMed  Google Scholar 

  36. Zuk M, Bryant MJ, Kolluru GR, Mirmovitch V (1996) Trade-offs in parasitology, evolution and behavior. Parasitol Today 12:46–47

    Article  PubMed  CAS  Google Scholar 

  37. Stearns S (1989) Trade-offs in life-history evolution. Funct Ecol 3(3):259–268

    Article  Google Scholar 

  38. Ellison PT (2001) On fertile ground. Harvard University Press, Cambridge

    Google Scholar 

  39. Kruger DJ, Nesse RM (2006) An evolutionary life-history framework for understanding sex differences in human mortality rates. Hum Nat 17:74–97

    Article  Google Scholar 

  40. Kruger D, Nesse RM (2004) Sexual selection and the male: female mortality ratio. Evol Psychol 2:66–85

    Google Scholar 

  41. Nesse RM (2005) Natural selection and the regulation of defenses: a signal detection analysis of the smoke detector principle. Evol Hum Behav 26:88–105

    Article  Google Scholar 

  42. Ellis BJ, Jackson JJ, Boyce WT (2006) The stress response systems: universality and adaptive individual differences. Dev Rev 26:175–212

    Article  Google Scholar 

  43. McEwen BS, Stellar E (1993) Stress and the individual: mechanisms leading to disease. Arch Intern Med 153:2093–2101. doi:10.1001/archinte.1993.00410180039004

    Article  PubMed  CAS  Google Scholar 

  44. Buss D, Haselton M, Shackelford T, Bleske A, Wakefield J (1998) Adaptations, exaptations, and spandrels. Am Psychol 53:533

    Article  PubMed  CAS  Google Scholar 

  45. Nesse RM (2011) Ten questions for evolutionary studies of disease vulnerability. Evolutionary Applications 4:264–277. doi:10.1111/j.1752-4571.2010.00181.x

    Article  Google Scholar 

  46. Nesse RM, Weder A (2007) Darwinian medicine: What evolutionary medicine offers to endothelium researchers. In: Aird W (ed) Endothelial biomedicine. Cambridge University Press, Cambridge, pp 122–128

    Chapter  Google Scholar 

  47. Williams GC (1966) Adaptation and natural selection: a critique of some current evolutionary thought. Princeton University Press, Princeton

    Google Scholar 

  48. Dawkins R (1989) The selfish gene. New edition. Oxford University Press, Oxford

    Google Scholar 

  49. Wynne-Edwards VC (1962) Animal dispersion in relation to social behavior. Oliver and Boyd, Edinburgh

    Google Scholar 

  50. Fischer O, Schmid-Hempel P (2005) Selection by parasites may increase host recombination frequency. Biol Lett 1:193–195. doi:10.1098/rsbl.2005.0296

    Article  PubMed  CAS  Google Scholar 

  51. West SA, El Mouden C, Gardner A (2011) Sixteen common misconceptions about the evolution of cooperation in humans. Evol Human Behav 32:231–262

    Article  Google Scholar 

  52. West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607

    Article  PubMed  CAS  Google Scholar 

  53. Frank SA (2012) Natural selection. III. Selection versus transmission and the levels of selection. J Evol Biol 25:227–243. doi:10.1111/j.1420-9101.2011.02431.x

    Article  PubMed  CAS  Google Scholar 

  54. Wade MJ, Wilson DS, Goodnight C, Taylor D, Bar-Yam Y, de Aguiar MAM, Stacey B, Werfel J, Hoelzer GA, Brodie Iii ED et al (2010) Multilevel and kin selection in a connected world. Nature 463:E8–E9

    Article  PubMed  CAS  Google Scholar 

  55. Hamilton WD (1964) The genetical evolution of social behavior I, and II. J Theor Biol 7:1–52

    Article  PubMed  CAS  Google Scholar 

  56. Trivers RL (1985) Social evolution. Benjamin/Cummings, Menlo Park

    Google Scholar 

  57. Alcock J (2001) The triumph of sociobiology. Oxford University Press, New York

    Google Scholar 

  58. Daly M, Wilson M (1995) Discriminative parental solicitude and the relevance of evolutionary models to the analysis of motivational systems. In: Gazzaniga M (ed) The cognitive neurosciences. The MIT Press, Cambridge, pp 1269–1286

    Google Scholar 

  59. Hawkes K, O'Connell JF, Blurton Jones NG, Alvarez H, Charnov EL (1998) Grandmothering, menopause, and the evolution of human life histories. Proc Natl Acad Sci USA 95:1336–1339

    Article  PubMed  CAS  Google Scholar 

  60. Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  61. Shanley D, Sear R, Mace R, Kirkwood T (2007) Testing evolutionary theories of menopause. Proc R Soc Lond B Biol Sci 274:2943–2949

    Article  Google Scholar 

  62. Hurst LD (1998) Selfish genes and meiotic drive. Nature 391:223. doi:10.1038/34523

    Article  PubMed  Google Scholar 

  63. Haig D, Grafen A (1991) Genetic scrambling as a defence against meiotic drive*. J Theor Biol 153:531–558

    Article  PubMed  CAS  Google Scholar 

  64. Rose M, Oakley T (2007) The new biology: beyond the modern synthesis. Biol Direct 2:30

    Article  PubMed  CAS  Google Scholar 

  65. Wilkins JF, Haig D (2003) What good is genomic imprinting: the function of parent-specific gene expression. Nat Rev Genet 4:359–368

    Article  PubMed  CAS  Google Scholar 

  66. Burt A, Trivers R (2006) Genes in conflict: the biology of selfish genetic elements. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  67. Partridge L, Hurst LD (1998) Sex and conflict. Science 281:2003–2008

    Article  PubMed  CAS  Google Scholar 

  68. Hurst GDD, Hurst LD, Johnstone RA (1992) Intranuclear conflict and its role in evolution. Trends Ecol Evol 7:373–378. doi:10.1016/0169-5347(92)90007-x

    Article  PubMed  CAS  Google Scholar 

  69. Turan N, Katari S, Gerson LF, Chalian R, Foster MW, Gaughan JP, Coutifaris C, Sapienza C (2010) Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 6:e1001033. doi:10.1371/journal.pgen.1001033

    Article  PubMed  CAS  Google Scholar 

  70. Omenn GS, Yocum AK, Menon R (2010) Alternative splice variants, a new class of protein cancer biomarker candidates: findings in pancreatic cancer and breast cancer with systems biology implications. Dis Markers 28:241–251

    PubMed  CAS  Google Scholar 

  71. Menon R, Roy A, Mukherjee S, Belkin S, Zhang Y, Omenn GS (2011) Functional implications of structural predictions for alternative splice proteins expressed in her2/neu-induced breast cancers. J Proteome Res 10:5503–5511. doi:10.1021/pr200772w

    PubMed  CAS  Google Scholar 

  72. Hamilton WD (1966) The moulding of senescence by natural selection. J Theor Biol 12:12–45

    Article  PubMed  CAS  Google Scholar 

  73. Kirkwood TBL, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci 332:15–24

    Article  PubMed  CAS  Google Scholar 

  74. Finch CE (2007) The biology of human longevity: Inflammation, nutrition, and aging in the evolution of lifespans. Academic, Amsterdam

    Google Scholar 

  75. Masoro EJ, Austad SN (2001) Handbook of the biology of aging, 5th edn. Academic, San Diego

    Google Scholar 

  76. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447. doi:10.1016/j.cell.2005.01.027

    Article  PubMed  CAS  Google Scholar 

  77. Austad SN (1998) Theories of aging: an overview. Aging (Milano) 10:146–147

    CAS  Google Scholar 

  78. Rose MR (1991) The evolutionary biology of aging. Oxford University Press, Oxford

    Google Scholar 

  79. Kenyon C (2011) The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci 366:9–16. doi:10.1098/rstb.2010.0276

    Article  PubMed  CAS  Google Scholar 

  80. Partridge L (2010) The new biology of ageing. Philos Trans R Soc Lond B Biol Sci 365:147–154. doi:10.1098/rstb.2009.0222

    Article  PubMed  Google Scholar 

  81. Crespi BJ (2010) The origins and evolution of genetic disease risk in modern humans. Ann N Y Acad Sci 1206:80–109. doi:10.1111/j.1749-6632.2010.05707.x

    Article  PubMed  Google Scholar 

  82. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, Chui DHK, Steinberg MH (2011) Fetal hemoglobin in sickle cell anemia. Blood 118:19–27. doi:10.1182/blood-2011-03-325258

    Article  PubMed  CAS  Google Scholar 

  83. Battaglino R, Fu J, Späte U, Ersoy U, Joe M, Sedaghat L, Stashenko P (2004) Serotonin regulates osteoclast differentiation through its transporter. J Bone Miner Res 19:1420–1431. doi:10.1359/jbmr.040606

    Article  PubMed  CAS  Google Scholar 

  84. Power ML, Schulkin J (2009) The evolution of obesity. Johns Hopkins University Press, Baltimore

    Google Scholar 

  85. Nesse RM, Bhatnagar S, Young EA (2007) Evolutionary origins and functions of the stress response. In: Fink G (ed) Encyclopedia of stress, 2nd edn. Academic, San Diego, pp 965–970

    Chapter  Google Scholar 

  86. Gemmell NJ, Slate J (2006) Heterozygote advantage for fecundity. PLoS One 1:e125. doi:10.1371/journal.pone.0000125

    Article  PubMed  CAS  Google Scholar 

  87. Andrés AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR, Gutenkunst RN, White TJ, Green ED, Bustamante CD et al (2009) Targets of balancing selection in the human genome. Mol Biol Evol 26:2755–2764. doi:10.1093/molbev/msp190

    Article  PubMed  CAS  Google Scholar 

  88. Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA (2010) The heritability of ocular traits. Surv Ophthalmol 55:561–583. doi:10.1016/j.survophthal.2010.07.003

    Article  PubMed  Google Scholar 

  89. Proctor RN (1988) Racial hygiene: medicine under the Nazis. Harvard University Press, Cambridge

    Google Scholar 

  90. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, Powell K, Mortensen HM, Hirbo JB, Osman M et al (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39:31–40

    Article  PubMed  CAS  Google Scholar 

  91. Ingram C, Mulcare C, Itan Y, Thomas M, Swallow D (2009) Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet 124:579–591

    Article  PubMed  CAS  Google Scholar 

  92. Beall CM (2007) Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA 104:8655–8660. doi:10.1073/pnas.0701985104

    Article  PubMed  CAS  Google Scholar 

  93. Omenn GS (2010) Evolution and public health. Proc Natl Acad Sci USA 107:1702–1709. doi:10.1073/pnas.0906198106

    Article  PubMed  CAS  Google Scholar 

  94. Jablonski NG (2004) The evolution of human skin and skin color. Annu Rev Anthrop 33:585–623

    Article  Google Scholar 

  95. Stephens JC, Reich DE, Goldstein DB, Shin HD, Smith MW, Carrington M, Winkler C, Huttley GA, Allikmets R, Schriml L et al (1998) Dating the origin of the CCR5-î32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet 62:1507–1515

    Article  PubMed  CAS  Google Scholar 

  96. Mecsas J, Franklin G, Kuziel WA, Brubaker RR, Falkow S, Mosier DE (2004) Evolutionary genetics: CCR5 mutation and plague protection. Nature 427:606–606

    Article  PubMed  CAS  Google Scholar 

  97. Sabeti PC, Walsh E, Schaffner SF, Varilly P, Fry B, Hutcheson HB, Cullen M, Mikkelsen TS, Roy J, Patterson N et al (2005) The case for selection at CCR5-delta32. PLoS Biol 3:e378. doi:10.1371/journal.pbio.0030378

    Article  PubMed  CAS  Google Scholar 

  98. Cochran G, Hardy J, Harpending H (2006) Natural history of Ashkenazi intelligence. J Biosoc Sci 38:659–693. doi:10.1017/S0021932005027069

    Article  PubMed  Google Scholar 

  99. Bray SM, Mulle JG, Dodd AF, Pulver AE, Wooding S, Warren ST (2010) Signatures of founder effects, admixture, and selection in the Ashkenazi Jewish population. Proc Natl Acad Sci USA 107:16222–16227. doi:10.1073/pnas.1004381107

    Article  PubMed  CAS  Google Scholar 

  100. Risch N, Tang H, Katzenstein H, Ekstein J (2003) Geographic distribution of disease mutations in the Ashkenazi Jewish population supports genetic drift over selection. Am J Hum Genet 72:812–822

    Article  PubMed  CAS  Google Scholar 

  101. Pierce SB, Spurrell CH, Mandell JB, Lee MK, Zeligson S, Bereman MS, Stray SM, Fokstuen S, MacCoss MJ, Levy-Lahad E et al (2011) Garrod's fourth inborn error of metabolism solved by the identification of mutations causing pentosuria. Proc Natl Acad Sci USA 108:18313–18317. doi:10.1073/pnas.1115888108

    Article  PubMed  CAS  Google Scholar 

  102. Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ (1994) Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266:107–109

    Article  PubMed  CAS  Google Scholar 

  103. Pier G, Grout M, Zaidi T, Meluleni G, Mueschenborn S, Banting G, Ratcliff R, Evans M, Colledge W (1998) Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393:79–82

    Article  PubMed  CAS  Google Scholar 

  104. Poolman EM, Galvani AP (2007) Evaluating candidate agents of selective pressure for cystic fibrosis. J R Soc Interface 4:91–98. doi:10.1098/rsif.2006.0154

    Article  PubMed  Google Scholar 

  105. Eaton SB, Eaton SB III (2000) Paleolithic vs. modern diets—selected pathophysiological implications. Eur J Nutr 39:67–70. doi:10.1007/s003940070032

    Article  PubMed  CAS  Google Scholar 

  106. De Groot NG, Otting N, Doxiadis GGM, Balla-Jhagjhoorsingh SS, Heeney JL, Van Rood JJ, Gagneux P, Bontrop RE (2002) Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proc Natl Acad Sci USA 99:11748–11753

    Article  PubMed  CAS  Google Scholar 

  107. Barreiro LB, Quintana-Murci L (2010) From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 11:17–30

    Article  PubMed  CAS  Google Scholar 

  108. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES (2006) Positive natural selection in the human lineage. Science 312:1614–1620. doi:10.1126/science.1124309

    Article  PubMed  CAS  Google Scholar 

  109. Mallick S, Gnerre S, Muller P, Reich D (2009) The difficulty of avoiding false positives in genome scans for natural selection. Genome Res 19:922–933. doi:10.1101/gr.086512.108

    Article  PubMed  CAS  Google Scholar 

  110. Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG (2007) Recent and ongoing selection in the human genome. Nat Rev Genet 8:857–868

    Article  PubMed  CAS  Google Scholar 

  111. Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, Srinivasan BS, Barsh GS, Myers RM, Feldman MW et al (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res 19:826–837. doi:10.1101/gr.087577.108

    Article  PubMed  CAS  Google Scholar 

  112. Pritchard JK, Di Rienzo A (2010) Adaptation—not by sweeps alone. Nat Rev Genet 11:665–667

    Article  PubMed  CAS  Google Scholar 

  113. Ding Y, Larson G, Rivas G, Lundberg C, Geller L, Ouyang C, Weitzel J, Archambeau J, Slater J, Daly MB et al (2008) Strong signature of natural selection within an fhit intron implicated in prostate cancer risk. PLoS One 3:e3533. doi:10.1371/journal.pone.0003533

    Article  PubMed  CAS  Google Scholar 

  114. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467:832–838

    Article  PubMed  CAS  Google Scholar 

  115. Omenn GS (2010) Overview of the symposium on public health significance of genomics and eco-genetics. Annu Rev Public Health 31:1–8. doi:10.1146/annurev.publhealth.012809.103639

    Article  PubMed  Google Scholar 

  116. Akil H, Brenner S, Kandel E, Kendler KS, King MC, Scolnick E, Watson JD, Zoghbi HY (2010) Medicine. The future of psychiatric research: genomes and neural circuits. Science 327:1580–1581. doi:10.1126/science.1188654

    Article  PubMed  CAS  Google Scholar 

  117. Cotton RGH, Auerbach AD, Axton M, Barash CI, Berkovic SF, Brookes AJ, Burn J, Cutting G, den Dunnen JT, Flicek P et al (2008) The human variome project. Science 322:861–862. doi:10.1126/science.1167363

    Article  PubMed  CAS  Google Scholar 

  118. Nesse RM (2009) Explaining depression: neuroscience is not enough, evolution is essential. In: Pariente CM, Nesse RM, Nutt DJ, Wolpert L (eds) Understanding depression: a translational approach. Oxford University Press, Oxford, pp 17–35

    Google Scholar 

  119. Nesse RM, Stein DJ (2012) Towards a genuinely medical model for psychiatric nosology. BMC Med 10:5. doi:10.1186/1741-7015-10-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Warm thanks to Margit Burmeister, Bernard Crespi, Alan Rogers, Srijan Sen, an anonymous reviewer, and members of the Evolution and Human Adaptation Program Laboratory group at the University of Michigan for helpful comments that improved this manuscript. GSO acknowledges support from NIH grants U54DA021519, UL1 RR024986, RM-08-029, and U54ES017885.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph M. Nesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesse, R.M., Ganten, D., Gregory, T.R. et al. Evolutionary molecular medicine. J Mol Med 90, 509–522 (2012). https://doi.org/10.1007/s00109-012-0889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0889-9

Keywords

Navigation