Skip to main content

Advertisement

Log in

Differentiation of multiple types of pancreatico-biliary tumors by molecular analysis of clinical specimens

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Timely and accurate diagnosis of pancreatic ductal adenocarcinoma (PDAC) is critical in order to provide adequate treatment to patients. However, the clinical signs and symptoms of PDAC are shared by several types of malignant or benign tumors which may be difficult to differentiate from PDAC with conventional diagnostic procedures. Among others, these include ampullary cancers, solid pseudopapillary tumors, and adenocarcinomas of the distant bile duct, as well as inflammatory masses developing in chronic pancreatitis. Here, we report an approach to accurately differentiate between these different types of pancreatic masses based on molecular analysis of biopsy material. A total of 156 bulk tissue and fine needle aspiration biopsy samples were analyzed using a dedicated diagnostic cDNA array and a composite classification algorithm developed based on linear support vector machines. All five histological subtypes of pancreatic masses were clearly separable with 100% accuracy when using all 156 individual samples for classification. Generalized performance of the classification system was tested by 10 × 10-fold cross validation (100 test runs). Correct classification into the five diagnostic groups was demonstrated for 81.5% of 1,560 test set predictions. Performance increased to 85.3% accuracy when PDAC and distant bile duct carcinomas were combined in a single diagnostic class. Importantly, overall sensitivity of detection of malignant disease was 92.2%. The molecular diagnostic approach presented here is suitable to significantly aid in the differential diagnosis of undetermined pancreatic masses. To our knowledge, this is the first study reporting accurate differentiation between several types of pancreatico-biliary tumors in a single molecular analytical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  2. Ghaneh P, Costello E, Neoptolemos JP (2007) Biology and management of pancreatic cancer. Gut 56:1134–1152

    Article  PubMed  CAS  Google Scholar 

  3. Carriaga MT, Henson DE (1995) Liver, gallbladder, extrahepatic bile ducts, and pancreas. Cancer 75:171–190

    Article  PubMed  CAS  Google Scholar 

  4. Michl P, Pauls S, Gress TM (2006) Evidence-based diagnosis and staging of pancreatic cancer. Best Pract Res Clin Gastroenterol 20:227–251

    Article  PubMed  Google Scholar 

  5. Chhieng DC, Jhala D, Jhala N, Eltoum I, Chen VK, Vickers S, Heslin MJ, Wilcox CM, Eloubeidi MA (2002) Endoscopic ultrasound-guided fine-needle aspiration biopsy: a study of 103 cases. Cancer 96:232–239

    Article  PubMed  Google Scholar 

  6. Brandwein SL, Farrell JJ, Centeno BA, Brugge WR (2001) Detection and tumor staging of malignancy in cystic, intraductal, and solid tumors of the pancreas by EUS. Gastrointest Endosc 53:722–727

    Article  PubMed  CAS  Google Scholar 

  7. Eloubeidi MA, Chen VK, Eltoum IA, Jhala D, Chhieng DC, Jhala N, Vickers SM, Wilcox CM (2003) Endoscopic ultrasound-guided fine needle aspiration biopsy of patients with suspected pancreatic cancer: diagnostic accuracy and acute and 30-day complications. Am J Gastroenterol 98:2663–2668

    PubMed  Google Scholar 

  8. Jhala NC, Jhala DN, Chhieng DC, Eloubeidi MA, Eltoum IA (2003) Endoscopic ultrasound-guided fine-needle aspiration. A cytopathologist’s perspective. Am J Clin Pathol 120:351–367

    Article  PubMed  Google Scholar 

  9. Klapman JB, Logrono R, Dye CE, Waxman I (2003) Clinical impact of on-site cytopathology interpretation on endoscopic ultrasound-guided fine needle aspiration. Am J Gastroenterol 98:1289–1294

    Article  PubMed  Google Scholar 

  10. Shin HJ, Lahoti S, Sneige N (2002) Endoscopic ultrasound-guided fine-needle aspiration in 179 cases: the M. D. Anderson Cancer Center experience. Cancer 96:174–180

    Article  PubMed  Google Scholar 

  11. Selvaggi SM (2004) Biliary brushing cytology. Cytopathology 15:74–79

    Article  PubMed  CAS  Google Scholar 

  12. Govil H, Reddy V, Kluskens L, Treaba D, Massarani-Wafai R, Selvaggi S, Gattuso P (2002) Brush cytology of the biliary tract: retrospective study of 278 cases with histopathologic correlation. Diagn Cytopathol 26:273–277

    Article  PubMed  Google Scholar 

  13. Farrell RJ, Jain AK, Brandwein SL, Wang H, Chuttani R, Pleskow DK (2001) The combination of stricture dilation, endoscopic needle aspiration, and biliary brushings significantly improves diagnostic yield from malignant bile duct strictures. Gastrointest Endosc 54:587–594

    Article  PubMed  CAS  Google Scholar 

  14. Mansfield JC, Griffin SM, Wadehra V, Matthewson K (1997) A prospective evaluation of cytology from biliary strictures. Gut 40:671–677

    PubMed  CAS  Google Scholar 

  15. Buchholz M, Kestler HA, Bauer A, Bock W, Rau B, Leder G, Kratzer W, Bommer M, Scarpa A, Schilling MK et al (2005) Specialized DNA arrays for the differentiation of pancreatic tumors. Clin Cancer Res 11:8048–8054

    Article  PubMed  CAS  Google Scholar 

  16. Harada T, Chelala C, Bhakta V, Chaplin T, Caulee K, Baril P, Young BD, Lemoine NR (2008) Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene 27:1951–1960

    Article  PubMed  CAS  Google Scholar 

  17. Harada T, Baril P, Gangeswaran R, Kelly G, Chelala C, Bhakta V, Caulee K, Mahon PC, Lemoine NR (2007) Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation. Br J Cancer 96:373–382

    Article  PubMed  CAS  Google Scholar 

  18. Nowak NJ, Gaile D, Conroy JM, McQuaid D, Cowell J, Carter R, Goggins MG, Hruban RH, Maitra A (2005) Genome-wide aberrations in pancreatic adenocarcinoma. Cancer Genet Cytogenet 161:36–50

    Article  PubMed  CAS  Google Scholar 

  19. Holzmann K, Kohlhammer H, Schwaenen C, Wessendorf S, Kestler HA, Schwoerer A, Rau B, Radlwimmer B, Dohner H, Lichter P et al (2004) Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res 64:4428–4433

    Article  PubMed  CAS  Google Scholar 

  20. Gress TM, Muller-Pillasch F, Geng M, Zimmerhackl F, Zehetner G, Friess H, Buchler M, Adler G, Lehrach H (1996) A pancreatic cancer-specific expression profile. Oncogene 13:1819–1830

    PubMed  CAS  Google Scholar 

  21. Han H, Bearss DJ, Browne LW, Calaluce R, Nagle RB, Von Hoff DD (2002) Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62:2890–2896

    PubMed  CAS  Google Scholar 

  22. Crnogorac-Jurcevic T, Efthimiou E, Capelli P, Blaveri E, Baron A, Terris B, Jones M, Tyson K, Bassi C, Scarpa A et al (2001) Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene 20:7437–7446

    Article  PubMed  CAS  Google Scholar 

  23. Crnogorac-Jurcevic T, Efthimiou E, Nielsen T, Loader J, Terris B, Stamp G, Baron A, Scarpa A, Lemoine NR (2002) Expression profiling of microdissected pancreatic adenocarcinomas. Oncogene 21:4587–4594

    Article  PubMed  CAS  Google Scholar 

  24. Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C, Walter K, Sato N, Parker A, Ashfaq R et al (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162:1151–1162

    Article  PubMed  CAS  Google Scholar 

  25. Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, van Heek T, Ashfaq R, Meyer R, Walter K, Berg K, Hollingsworth MA, Cameron JL et al (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 160:1239–1249

    Article  PubMed  CAS  Google Scholar 

  26. Buchholz M, Braun M, Heidenblut A, Kestler HA, Kloppel G, Schmiegel W, Hahn SA, Luttges J, Gress TM (2005) Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene 24:6626–6636

    Article  PubMed  CAS  Google Scholar 

  27. Grutzmann R, Foerder M, Alldinger I, Staub E, Brummendorf T, Ropcke S, Li X, Kristiansen G, Jesnowski R, Sipos B et al (2003) Gene expression profiles of microdissected pancreatic ductal adenocarcinoma. Virchows Arch 443:508–517

    Article  PubMed  Google Scholar 

  28. Grutzmann R, Pilarsky C, Ammerpohl O, Luttges J, Bohme A, Sipos B, Foerder M, Alldinger I, Jahnke B, Schackert HK et al (2004) Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia 6:611–622

    Article  PubMed  Google Scholar 

  29. Jin G, Hu XG, Ying K, Tang Y, Liu R, Zhang YJ, Jing ZP, Xie Y, Mao YM (2005) Discovery and analysis of pancreatic adenocarcinoma genes using cDNA microarrays. World J Gastroenterol 11:6543–6548

    CAS  Google Scholar 

  30. Logsdon CD, Simeone DM, Binkley C, Arumugam T, Greenson JK, Giordano TJ, Misek DE, Kuick R, Hanash S (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657

    PubMed  CAS  Google Scholar 

  31. Nakamura T, Furukawa Y, Nakagawa H, Tsunoda T, Ohigashi H, Murata K, Ishikawa O, Ohgaki K, Kashimura N, Miyamoto M et al (2004) Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene 23:2385–2400

    Article  PubMed  CAS  Google Scholar 

  32. Prasad NB, Biankin AV, Fukushima N, Maitra A, Dhara S, Elkahloun AG, Hruban RH, Goggins M, Leach SD (2005) Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res 65:1619–1626

    Article  PubMed  CAS  Google Scholar 

  33. Friess H, Ding J, Kleeff J, Fenkell L, Rosinski JA, Guweidhi A, Reidhaar-Olson JF, Korc M, Hammer J, Buchler MW (2003) Microarray-based identification of differentially expressed growth- and metastasis-associated genes in pancreatic cancer. Cell Mol Life Sci 60:1180–1199

    PubMed  CAS  Google Scholar 

  34. Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V, Capurso G, Lattimore S, Akada M, Sunamura M, Prime W, Campbell F, Brentnall TA et al (2005) Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 129:1454–1463

    Article  PubMed  CAS  Google Scholar 

  35. Chen R, Pan S, Brentnall TA, Aebersold R (2005) Proteomic profiling of pancreatic cancer for biomarker discovery. Mol Cell Proteomics 4:523–533

    Article  PubMed  CAS  Google Scholar 

  36. Chen R, Yi EC, Donohoe S, Pan S, Eng J, Cooke K, Crispin DA, Lane Z, Goodlett DR, Bronner MP et al (2005) Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 129:1187–1197

    Article  PubMed  CAS  Google Scholar 

  37. Shekouh AR, Thompson CC, Prime W, Campbell F, Hamlett J, Herrington CS, Lemoine NR, Crnogorac-Jurcevic T, Buechler MW, Friess H et al (2003) Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics 3:1988–2001

    Article  PubMed  CAS  Google Scholar 

  38. Shen J, Person MD, Zhu J, Abbruzzese JL, Li D (2004) Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 64:9018–9026

    Article  PubMed  CAS  Google Scholar 

  39. Sato N, Fukushima N, Hruban RH, Goggins M (2008) CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 21:238–244

    Article  PubMed  CAS  Google Scholar 

  40. Sato N, Goggins M (2006) Epigenetic alterations in intraductal papillary mucinous neoplasms of the pancreas. J Hepatobiliary Pancreat Surg 13:280–285

    Article  PubMed  Google Scholar 

  41. Sato N, Matsubayashi H, Abe T, Fukushima N, Goggins M (2005) Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clin Cancer Res 11:4681–4688

    Article  PubMed  CAS  Google Scholar 

  42. Ueki T, Toyota M, Skinner H, Walter KM, Yeo CJ, Issa JP, Hruban RH, Goggins M (2001) Identification and characterization of differentially methylated CpG islands in pancreatic carcinoma. Cancer Res 61:8540–8546

    PubMed  CAS  Google Scholar 

  43. Buchholz M, Kestler H, Gress TM (2008) Differential diagnosis of pancreatic tumors by molecular analysis of clinical specimens. Pancreatology 8:551–557

    Article  PubMed  CAS  Google Scholar 

  44. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by EU FP6 grant LSHB-CT-2006-018771 (Integrated Project “MolDiag-Paca”), the German Federal Ministry of Education and Research (BMBF) within the framework of the Program of Medical Genome Research (PaCa-Net; project ID PKB-01GS08), Associazione Italiana Ricerca Cancro (AIRC, http://www.airc.it/), Fondazione CariParo (www.fondazionecariparo.it), and the Italian Ministry of Health, Rome, Italy (http://www.salute.gov.it/). The responsibility for the content lies exclusively with the authors.

Disclosure

The authors declare that no conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Gress.

Additional information

Thomas M. Gress and Hans A. Kestler contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1,439 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gress, T.M., Kestler, H.A., Lausser, L. et al. Differentiation of multiple types of pancreatico-biliary tumors by molecular analysis of clinical specimens. J Mol Med 90, 457–464 (2012). https://doi.org/10.1007/s00109-011-0832-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0832-5

Keywords

Navigation