Skip to main content
Log in

Involvement of TNFα-induced TLR4–NF-κB and TLR4–HIF-1α feed-forward loops in the regulation of inflammatory responses in glioma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The precise role of different toll-like receptor (TLR) superfamily members is just beginning to get elucidated in glioblastoma multiforme (GBM). In this study, we observed heightened TLR4 levels in GBM tumor samples as compared to adjacent normal tissue. Since the pro-inflammatory cytokine tumor necrosis factor (TNF)α induces NF-κB activation in GBM, and as several common signaling mediators are involved in TNFα and TLR4-mediated NF-κB activation, we investigated the role of TLR4 in the regulation of NF-κB activation and inflammatory responses in TNFα-treated glioma cells. TNFα elevated TLR4 expression and inhibition of TLR4 signaling by either signaling inhibitor, neutralizing antibody, or small interfering RNA (siRNA)-attenuated TNFα-induced NF-κB activation. TLR4-mediated NF-κB activation was independent of canonical myeloid differentiation factor 88 signaling but involved toll/IL-1R homology domain-containing adaptor protein-inducing interferon-β. Inhibition of TLR4 signaling abrogated TNFα-induced increase in (1) transcription factors interferon (IFN) regulatory factor 3 and STAT-1 and (2) IFNβ and inflammatory cytokines/chemokines expression. Furthermore, TNFα-induced TLR4-dependent increase in AKT activation and HIF-1α transcriptional activation suggested the existence of TLR4–AKT–HIF-1α axis. Importantly, TNFα-induced TLR4 was abrogated in cells transfected with dominant negative IκB and HIF-1α siRNA. Our studies indicate that TNFα triggered TLR4–HIF-1α and NF-κB–TLR4 feed-forward loops act in tandem to sustain inflammatory response in glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G (2008) Cancers take their Toll—the function and regulation of Toll-like receptors in cancer cells. Oncogene 27:225–233

    Article  PubMed  CAS  Google Scholar 

  2. Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, Visintin I, Rutherford T, Mor G (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66:3859–3868

    Article  PubMed  CAS  Google Scholar 

  3. Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, Spaczynski M, Whiteside TL (2009) TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 28:4353–4363

    Article  PubMed  CAS  Google Scholar 

  4. Szczepanski MJ, Czystowska M, Szajnik M, Harasymczuk M, Boyiadzis M, Kruk-Zagajewska A, Szyfter W, Zeromski J, Whiteside TL (2009) Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res 69:3105–3113

    Article  PubMed  CAS  Google Scholar 

  5. He W, Liu Q, Wang L, Chen W, Li N, Cao X (2007) TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44:2850–2859

    Article  PubMed  CAS  Google Scholar 

  6. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  7. Theofilopoulos AN, Baccala R, Beutler B, Kono DH (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336

    Article  PubMed  CAS  Google Scholar 

  8. Simonaro CM, Ge Y, Eliyahu E, He X, Jepsen KJ, Schuchman EH (2010) Involvement of the Toll-like receptor 4 pathway and use of TNF-alpha antagonists for treatment of the mucopolysaccharidoses. Proc Natl Acad Sci USA 107:222–227

    Article  PubMed  CAS  Google Scholar 

  9. Nozell S, Laver T, Moseley D, Nowoslawski L, De Vos M, Atkinson GP, Harrison K, Nabors LB, Benveniste EN (2008) The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol 28:6632–6645

    Article  PubMed  CAS  Google Scholar 

  10. Dong J, Jimi E, Zeiss C, Hayden MS, Ghosh S (2010) Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation and localized TNFalpha-independent inflammatory disease. Genes Dev 24:1709–1717

    Article  PubMed  CAS  Google Scholar 

  11. Sharma V, Dixit D, Koul N, Mehta VS, Sen E (2011) Ras regulates interleukin-1beta-induced HIF-1alpha transcriptional activity in glioblastoma. J Mol Med 89(2):123–136

    Article  PubMed  CAS  Google Scholar 

  12. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67

    Article  PubMed  CAS  Google Scholar 

  13. Gupta SC, Sundaram C, Reuter S, Aggarwal BB (2010) Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta 1799:775–787

    PubMed  CAS  Google Scholar 

  14. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  15. Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29:405–434

    Article  PubMed  CAS  Google Scholar 

  16. Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L (2003) IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17:2115–2117

    PubMed  CAS  Google Scholar 

  17. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7:134–153

    Article  PubMed  CAS  Google Scholar 

  18. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618

    Article  PubMed  CAS  Google Scholar 

  19. Goto Y, Arigami T, Kitago M, Nguyen SL, Narita N, Ferrone S, Morton DL, Irie RF, Hoon DS (2008) Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol Cancer Ther 7:3642–3653

    Article  PubMed  CAS  Google Scholar 

  20. Sato Y, Goto Y, Narita N, Hoon DS (2009) Cancer cells expressing Toll-like receptors and the tumor microenvironment. Cancer Microenviron 2(Suppl 1):205–214

    Article  PubMed  Google Scholar 

  21. Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V (2007) Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol 178:7516–7519

    PubMed  CAS  Google Scholar 

  22. Chen NJ, Chio II, Lin WJ, Duncan G, Chau H, Katz D, Huang HL, Pike KA, Hao Z, Su YW, Yamamoto K, de Pooter RF, Zuniga-Pflucker JC, Wakeham A, Yeh WC, Mak TW (2008) Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proc Natl Acad Sci U S A 105:12429–12434

    Article  PubMed  CAS  Google Scholar 

  23. Muzio M, Ni J, Feng P, Dixit VM (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:1612–1615

    Article  PubMed  CAS  Google Scholar 

  24. Biswas S, Gupta MK, Chattopadhyay D, Mukhopadhyay CK (2007) Insulin-induced activation of hypoxia-inducible factor-1 requires generation of reactive oxygen species by NADPH oxidase. Am J Physiol Heart Circ Physiol 292:H758–H766

    Article  PubMed  CAS  Google Scholar 

  25. Sharma V, Tewari R, Sk UH, Joseph C, Sen E (2008) Ebselen sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through two distinct pathways involving NF-kappaB downregulation and Fas-mediated formation of death inducing signaling complex. Int J Cancer 123:2204–2212

    Article  PubMed  CAS  Google Scholar 

  26. Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E (2007) Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther 6:2544–2553

    Article  PubMed  CAS  Google Scholar 

  27. An H, Yu Y, Zhang M, Xu H, Qi R, Yan X, Liu S, Wang W, Guo Z, Guo J, Qin Z, Cao X (2002) Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology 106:38–45

    Article  PubMed  CAS  Google Scholar 

  28. Covert MW, Leung TH, Gaston JE, Baltimore D (2005) Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science 309:1854–1857

    Article  PubMed  CAS  Google Scholar 

  29. Ii M, Matsunaga N, Hazeki K, Nakamura K, Takashima K, Seya T, Hazeki O, Kitazaki T, Iizawa Y (2006) A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharmacol 69:1288–1295

    Article  PubMed  CAS  Google Scholar 

  30. Kravchenko VV, Kaufmann GF, Mathison JC, Scott DA, Katz AZ, Grauer DC, Lehmann M, Meijler MM, Janda KD, Ulevitch RJ (2008) Modulation of gene expression via disruption of NF-kappaB signaling by a bacterial small molecule. Science 321:259–263

    Article  PubMed  CAS  Google Scholar 

  31. Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, Mansell A (2009) MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem 284:24192–24203

    Article  PubMed  CAS  Google Scholar 

  32. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S (2003) Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4304–4310

    PubMed  CAS  Google Scholar 

  33. Wang H, Garcia CA, Rehani K, Cekic C, Alard P, Kinane DF, Mitchell T, Martin M (2008) IFN-beta production by TLR4-stimulated innate immune cells is negatively regulated by GSK3-beta. J Immunol 181:6797–6802

    PubMed  CAS  Google Scholar 

  34. Yarilina A, Park-Min KH, Antoniv T, Hu X, Ivashkiv LB (2008) TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat Immunol 9:378–387

    Article  PubMed  CAS  Google Scholar 

  35. Rhee SH, Jones BW, Toshchakov V, Vogel SN, Fenton MJ (2003) Toll-like receptors 2 and 4 activate STAT1 serine phosphorylation by distinct mechanisms in macrophages. J Biol Chem 278:22506–22512

    Article  PubMed  CAS  Google Scholar 

  36. Kuhlicke J, Frick JS, Morote-Garcia JC, Rosenberger P, Eltzschig HK (2007) Hypoxia inducible factor (HIF)-1 coordinates induction of Toll-like receptors TLR2 and TLR6 during hypoxia. PLoS One 2:e1364

    Article  PubMed  Google Scholar 

  37. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807–811

    Article  PubMed  CAS  Google Scholar 

  38. Vivarelli MS, McDonald D, Miller M, Cusson N, Kelliher M, Geha RS (2004) RIP links TLR4 to Akt and is essential for cell survival in response to LPS stimulation. J Exp Med 200:399–404

    Article  PubMed  CAS  Google Scholar 

  39. Pore N, Jiang Z, Shu HK, Bernhard E, Kao GD, Maity A (2006) Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol Cancer Res 4:471–479

    Article  PubMed  CAS  Google Scholar 

  40. Ghosh S, Tewari R, Dixit D, Sen E (2010) TNFalpha induced oxidative stress dependent Akt signaling affects actin cytoskeletal organization in glioma cells. Neurochem Int 56:194–201

    Article  PubMed  CAS  Google Scholar 

  41. Kopp EB, Ghosh S (1995) NF-kappa B and rel proteins in innate immunity. Adv Immunol 58:1–27

    Article  PubMed  CAS  Google Scholar 

  42. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825

    Article  PubMed  CAS  Google Scholar 

  43. Juang YT, Lowther W, Kellum M, Au WC, Lin R, Hiscott J, Pitha PM (1998) Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc Natl Acad Sci U S A 95:9837–9842

    Article  PubMed  CAS  Google Scholar 

  44. Toshchakov V, Jones BW, Perera PY, Thomas K, Cody MJ, Zhang S, Williams BR, Major J, Hamilton TA, Fenton MJ, Vogel SN (2002) TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 3:392–398

    Article  PubMed  CAS  Google Scholar 

  45. Honda K, Takaoka A, Taniguchi T (2006) Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25:349–360

    Article  PubMed  CAS  Google Scholar 

  46. Nozell S, Laver T, Patel K, Benveniste EN (2006) Mechanism of IFN-beta-mediated inhibition of IL-8 gene expression in astroglioma cells. J Immunol 177:822–830

    PubMed  CAS  Google Scholar 

  47. Tewari R, Sharma V, Koul N, Ghosh A, Joseph C, Hossain Sk U, Sen E (2009) Ebselen abrogates TNFalpha induced pro-inflammatory response in glioblastoma. Mol Oncol 3:77–83

    Article  PubMed  CAS  Google Scholar 

  48. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133

    Article  PubMed  CAS  Google Scholar 

  49. Huettner C, Paulus W, Roggendorf W (1995) Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 146:317–322

    PubMed  CAS  Google Scholar 

  50. Hellums EK, Markert JM, Parker JN, He B, Perbal B, Roizman B, Whitley RJ, Langford CP, Bharara S, Gillespie GY (2005) Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro Oncol 7:213–224

    Article  PubMed  CAS  Google Scholar 

  51. Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, Weller M (2003) Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54:388–392

    Article  PubMed  CAS  Google Scholar 

  52. Grauer OM, Molling JW, Bennink E, Toonen LW, Sutmuller RP, Nierkens S, Adema GJ (2008) TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 181:6720–6729

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by a research grant from the Department of Biotechnology–DBT (BT/PR12924/Med/30/235/09) to ES. We would like to thank Mr. Shanker Dutt Joshi for technical assistance and help with immunohistochemistry.

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellora Sen.

Additional information

Saurav Roy Choudhury and Sadashib Ghosh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewari, R., Choudhury, S.R., Ghosh, S. et al. Involvement of TNFα-induced TLR4–NF-κB and TLR4–HIF-1α feed-forward loops in the regulation of inflammatory responses in glioma. J Mol Med 90, 67–80 (2012). https://doi.org/10.1007/s00109-011-0807-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0807-6

Keywords

Navigation