Skip to main content
Log in

From oncoproteins/tumor suppressors to microRNAs, the newest therapeutic targets for pulmonary arterial hypertension

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension (PAH) is a disease of the pulmonary vasculature characterized by constricted and remodeled pulmonary arteries. This phenomenon is associated with enhanced pulmonary artery smooth muscle cells proliferation and suppressed apoptosis, metabolism shift, inflammation, and several other features that are considered as hallmarks of cancer. Since oncogenes, tumor suppressors, and miRNAs are the major regulators of signaling in the cancer phenotype, we studied if the same type of regulation is operative in PAH. From the discovery of BMPR2 mutation in familial forms of PAH, oncogenic pathways activation like MAPK were identified. Recently, the Src/STAT3/Pim1 axis was also described as playing a critical role in PAH pathogenesis. Moreover, through the down-regulation of miR-204, STAT3 enhances a positive feedback loop sustaining its own activation, showing that miRNA regulation is critical in PAH. Taken together, targeting oncoproteins or miRNAs appear as new therapeutic strategies for PAH. Several oncoprotein inhibitors are already in trials for cancer and could be soon available for PAH. Concerning miRNAs, the youth of this area makes therapies less achievable soon but not less interesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwemmers S, Will B, Waller CF, Abdulkarim K, Johansson P, Andreasson B, Pahl HL (2007) JAK2V617F-negative ET patients do not display constitutively active JAK/STAT signaling. Exp Hematol 35:1695–1703. doi:10.1016/j.exphem.2007.07.004

    Article  PubMed  CAS  Google Scholar 

  2. Butrous G, Ghofrani HA, Grimminger F (2008) Pulmonary vascular disease in the developing world. Circulation 118:1758–1766. doi:10.1161/CIRCULATIONAHA.107.727289

    Article  PubMed  Google Scholar 

  3. Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S (2007) An epidemiological study of pulmonary arterial hypertension. Eur Respir J 30:104–109. doi:10.1183/09031936.00092306

    Article  PubMed  CAS  Google Scholar 

  4. Archer S, Rich S (2000) Primary pulmonary hypertension: a vascular biology and translational research “Work in progress”. Circulation 102:2781–2791

    PubMed  CAS  Google Scholar 

  5. Ahmad S (1995) Pulmonary hypertension and right heart failure. Chest 108:1773

    Article  PubMed  CAS  Google Scholar 

  6. Long L, Crosby A, Yang X, Southwood M, Upton PD, Kim DK, Morrell NW (2009) Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation 119:566–576. doi:10.1161/CIRCULATIONAHA.108.821504

    Article  PubMed  CAS  Google Scholar 

  7. Tada Y, Majka S, Carr M, Harral J, Crona D, Kuriyama T, West J (2007) Molecular effects of loss of BMPR2 signaling in smooth muscle in a transgenic mouse model of PAH. Am J Physiol Lung Cell Mol Physiol 292:L1556–L1563. doi:10.1152/ajplung.00305.2006

    Article  PubMed  CAS  Google Scholar 

  8. Zakrzewicz A, Hecker M, Marsh LM, Kwapiszewska G, Nejman B, Long L, Seeger W, Schermuly RT, Morrell NW, Morty RE, Eickelberg O (2007) Receptor for activated C-kinase 1, a novel interaction partner of type II bone morphogenetic protein receptor, regulates smooth muscle cell proliferation in pulmonary arterial hypertension. Circulation 115:2957–2968. doi:10.1161/CIRCULATIONAHA.106.670026

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi H, Goto N, Kojima Y, Tsuda Y, Morio Y, Muramatsu M, Fukuchi Y (2006) Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290:L450–L458. doi:10.1152/ajplung.00206.2005

    Article  PubMed  CAS  Google Scholar 

  10. McMurtry MS, Moudgil R, Hashimoto K, Bonnet S, Michelakis ED, Archer SL (2007) Overexpression of human bone morphogenetic protein receptor 2 does not ameliorate monocrotaline pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 292:L872–L878. doi:10.1152/ajplung.00309.2006

    Article  PubMed  CAS  Google Scholar 

  11. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104:11418–11423. doi:10.1073/pnas.0610467104

    Article  PubMed  CAS  Google Scholar 

  12. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337. doi:10.1038/nrc3038

    Article  PubMed  CAS  Google Scholar 

  13. Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JR, Michelakis ED (2010) Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med 2:44rr58. doi:10.1126/scitranslmed.3001327

    Article  Google Scholar 

  14. Rai PR, Cool CD, King JA, Stevens T, Burns N, Winn RA, Kasper M, Voelkel NF (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178:558–564. doi:10.1164/rccm.200709-1369PP

    Article  PubMed  Google Scholar 

  15. Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart L, Bull TM, Voelkel NF (2001) The pathobiology of pulmonary hypertension. Endothelium Clin Chest Med 22:405–418

    Article  CAS  Google Scholar 

  16. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi:S0092-8674(00)81683-9

    Article  PubMed  CAS  Google Scholar 

  17. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  18. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24S

    Article  PubMed  CAS  Google Scholar 

  19. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  PubMed  CAS  Google Scholar 

  20. Bonnet S, Paulin R, Sutendra G, Dromparis P, Roy M, Watson KO, Nagendran J, Haromy A, Dyck JR, Michelakis ED (2009) Dehydroepiandrosterone reverses systemic vascular remodeling through the inhibition of the Akt/GSK3-{beta}/NFAT axis. Circulation 120:1231–1240. doi:10.1161/CIRCULATIONAHA.109.848911

    Article  PubMed  CAS  Google Scholar 

  21. Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JR, Michelakis ED (2010) Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med 2:44ra58. doi:10.1126/scitranslmed.3001327

    Article  PubMed  Google Scholar 

  22. Ruan K, Fang X, Ouyang G (2009) MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 285:116–126. doi:10.1016/j.canlet.2009.04.031

    Article  PubMed  CAS  Google Scholar 

  23. Humbert M, Monti G, Fartoukh M, Magnan A, Brenot F, Rain B, Capron F, Galanaud P, Duroux P, Simonneau G, Emilie D (1998) Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur Respir J 11:554–559

    PubMed  CAS  Google Scholar 

  24. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811–2821

    Article  PubMed  CAS  Google Scholar 

  25. Merklinger SL, Jones PL, Martinez EC, Rabinovitch M (2005) Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112:423–431. doi:10.1161/CIRCULATIONAHA.105.540542

    Article  PubMed  CAS  Google Scholar 

  26. Csiszar A, Labinskyy N, Olson S, Pinto JT, Gupte S, Wu JM, Hu F, Ballabh P, Podlutsky A, Losonczy G et al (2009) Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension 54:668–675. doi:10.1161/HYPERTENSIONAHA.109.133397

    Article  PubMed  CAS  Google Scholar 

  27. Frasch HF, Marshall C, Marshall BE (1999) Endothelin-1 is elevated in monocrotaline pulmonary hypertension. Am J Physiol 276:L304–L310

    PubMed  CAS  Google Scholar 

  28. Gilboa L, Nohe A, Geissendorfer T, Sebald W, Henis YI, Knaus P (2000) Bone morphogenetic protein receptor complexes on the surface of live cells: a new oligomerization mode for serine/threonine kinase receptors. Mol Biol Cell 11:1023–1035

    PubMed  CAS  Google Scholar 

  29. Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754. doi:10.1093/emboj/19.8.1745

    Article  PubMed  CAS  Google Scholar 

  30. Newman JH, Wheeler L, Lane KB, Loyd E, Gaddipati R, Phillips JA 3rd, Loyd JE (2001) Mutation in the gene for bone morphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med 345:319–324. doi:10.1056/NEJM200108023450502

    Article  PubMed  CAS  Google Scholar 

  31. Shi Y (2001) Structural insights on Smad function in TGFbeta signaling. Bioessays 23:223–232. doi:10.1002/1521-1878(200103)23:3<223::AID-BIES1032>3.0.CO;2-U

    Article  PubMed  CAS  Google Scholar 

  32. von Bubnoff A, Cho KW (2001) Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev Biol 239:1–14. doi:S0012-1606(01)90388-4

    Article  Google Scholar 

  33. Nohe A, Hassel S, Ehrlich M, Neubauer F, Sebald W, Henis YI, Knaus P (2002) The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem 277:5330–5338. doi:10.1074/jbc.M102750200

    Article  PubMed  CAS  Google Scholar 

  34. Hassel S, Schmitt S, Hartung A, Roth M, Nohe A, Petersen N, Ehrlich M, Henis YI, Sebald W, Knaus P (2003) Initiation of Smad-dependent and Smad-independent signaling via distinct BMP-receptor complexes. J Bone Joint Surg Am 85-A(Suppl 3):44–51

    PubMed  Google Scholar 

  35. Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK, Atkinson C, Chen H, Trembath RC, Morrell NW (2005) Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053–1063. doi:10.1161/01.RES.0000166926.54293.68

    Article  PubMed  CAS  Google Scholar 

  36. Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, Desai AA, Singleton PA, Sammani S, Sam L, Liu Y, Husain AN, Lang RM et al (2008) Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics 33:278–291. doi:10.1152/physiolgenomics.00169.2007

    Article  PubMed  CAS  Google Scholar 

  37. Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S (2001) Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J 20:4132–4142. doi:10.1093/emboj/20.15.4132

    Article  PubMed  CAS  Google Scholar 

  38. Roberts AB (2002) The ever-increasing complexity of TGF-beta signaling. Cytokine Growth Factor Rev 13:3–5. doi:S1359610101000272

    Article  PubMed  CAS  Google Scholar 

  39. Chen XY, Dun JN, Miao QF, Zhang YJ (2009) Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses 5-hydroxytryptamine-induced pulmonary artery smooth muscle cell proliferation via JNK and ERK1/2 pathway. Pharmacology 83:67–79. doi:10.1159/000178814

    Article  PubMed  CAS  Google Scholar 

  40. Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602:114–130. doi:S0304419X02000409

    PubMed  CAS  Google Scholar 

  41. Wong WK, Knowles JA, Morse JH (2005) Bone morphogenetic protein receptor type II C-terminus interacts with c-Src: implication for a role in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 33:438–446. doi:10.1165/rcmb.2005-0103OC

    Article  PubMed  CAS  Google Scholar 

  42. Padma R, Nagarajan L (1991) The human PIM-1 gene product is a protein serine kinase. Cancer Res 51:2486–2489

    PubMed  CAS  Google Scholar 

  43. Beier UH, Weise JB, Laudien M, Sauerwein H, Gorogh T (2007) Overexpression of Pim-1 in head and neck squamous cell carcinomas. Int J Oncol 30:1381–1387

    PubMed  CAS  Google Scholar 

  44. Chiang WF, Yen CY, Lin CN, Liaw GA, Chiu CT, Hsia YJ, Liu SY (2006) Up-regulation of a serine-threonine kinase proto-oncogene Pim-1 in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 35:740–745. doi:10.1016/j.ijom.2006.01.027

    Article  PubMed  Google Scholar 

  45. Cibull TL, Jones TD, Li L, Eble JN, Ann Baldridge L, Malott SR, Luo Y, Cheng L (2006) Overexpression of Pim-1 during progression of prostatic adenocarcinoma. J Clin Pathol 59:285–288. doi:10.1136/jcp. 2005.027672

    Article  PubMed  CAS  Google Scholar 

  46. Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R et al (2007) Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13:1467–1475

    Article  PubMed  CAS  Google Scholar 

  47. Sussman MA (2009) Mitochondrial integrity: preservation through Akt/Pim-1 kinase signaling in the cardiomyocyte. Expert Rev Cardiovasc Ther 7:929–938. doi:10.1586/erc.09.48

    Article  PubMed  CAS  Google Scholar 

  48. Willert M, Augstein A, Poitz DM, Schmeisser A, Strasser RH, Braun-Dullaeus RC (2009) Transcriptional regulation of Pim-1 kinase in vascular smooth muscle cells and its role for proliferation. Basic Res Cardiol. doi:10.1007/s00395-009-0055-x

  49. Glazova M, Aho TL, Palmetshofer A, Murashov A, Scheinin M, Koskinen PJ (2005) Pim-1 kinase enhances NFATc activity and neuroendocrine functions in PC12 cells. Brain Res Mol Brain Res 138:116–123. doi:10.1016/j.molbrainres.2005.04.003

    Article  PubMed  CAS  Google Scholar 

  50. Rainio EM, Sandholm J, Koskinen PJ (2002) Cutting edge: transcriptional activity of NFATc1 is enhanced by the Pim-1 kinase. J Immunol 168:1524–1527

    PubMed  CAS  Google Scholar 

  51. Catlett-Falcone R, Dalton WS, Jove R (1999) STAT proteins as novel targets for cancer therapy. Signal transducer an activator of transcription. Curr Opin Oncol 11:490–496

    Article  PubMed  CAS  Google Scholar 

  52. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S et al (2001) Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20:2499–2513. doi:10.1038/sj.onc.1204349

    Article  PubMed  CAS  Google Scholar 

  53. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117. doi:10.1016/j.cell.2008.04.043

    Article  PubMed  CAS  Google Scholar 

  54. Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, Pohl A, Raney BJ, Wang T, Hinrichs AS, Zweig AS et al (2010) ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res 38:D620–D625. doi:10.1093/nar/gkp961

    Article  PubMed  CAS  Google Scholar 

  55. Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, Cote J, Provencher S, Sussman MA, Bonnet S (2011) Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation 123:1205–1215. doi:10.1161/CIRCULATIONAHA.110.963314

    Article  PubMed  CAS  Google Scholar 

  56. Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J et al (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208:535–548. doi:10.1084/jem.20101812

    Article  PubMed  CAS  Google Scholar 

  57. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Article  PubMed  CAS  Google Scholar 

  58. Banes-Berceli AK, Ketsawatsomkron P, Ogbi S, Patel B, Pollock DM, Marrero MB (2007) Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation. Am J Physiol Heart Circ Physiol 293:H1291–H1299. doi:10.1152/ajpheart.00181.2007

    Article  PubMed  CAS  Google Scholar 

  59. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB et al (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    PubMed  CAS  Google Scholar 

  60. Mazure NM, Chen EY, Laderoute KR, Giaccia AJ (1997) Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90:3322–3331

    PubMed  CAS  Google Scholar 

  61. Jiang BH, Agani F, Passaniti A, Semenza GL (1997) V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 57:5328–5335

    PubMed  CAS  Google Scholar 

  62. Ausserer WA, Bourrat-Floeck B, Green CJ, Laderoute KR, Sutherland RM (1994) Regulation of c-jun expression during hypoxic and low-glucose stress. Mol Cell Biol 14:5032–5042

    PubMed  CAS  Google Scholar 

  63. Muller JM, Krauss B, Kaltschmidt C, Baeuerle PA, Rupec RA (1997) Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J Biol Chem 272:23435–23439

    Article  PubMed  CAS  Google Scholar 

  64. Kaab S, Miguel-Velado E, Lopez-Lopez JR, Perez-Garcia MT (2005) Down regulation of Kv3.4 channels by chronic hypoxia increases acute oxygen sensitivity in rabbit carotid body. J Physiol 566:395–408. doi:10.1113/jphysiol.2005.085837

    Article  PubMed  Google Scholar 

  65. O'Reilly MA, Staversky RJ, Watkins RH, Reed CK, de Mesy Jensen KL, Finkelstein JN, Keng PC (2001) The cyclin-dependent kinase inhibitor p21 protects the lung from oxidative stress. Am J Respir Cell Mol Biol 24:703–710

    PubMed  Google Scholar 

  66. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641. doi:10.1161/CIRCULATIONAHA.105.609008

    Article  PubMed  CAS  Google Scholar 

  67. Thebaud B, Michelakis ED, Wu XC, Moudgil R, Kuzyk M, Dyck JR, Harry G, Hashimoto K, Haromy A, Rebeyka I, Archer SL (2004) Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus. Circulation 110:1372–1379. doi:10.1161/01.CIR.0000141292.28616.65

    Article  PubMed  CAS  Google Scholar 

  68. Fouty BW, Grimison B, Fagan KA, Le Cras TD, Harral JW, Hoedt-Miller M, Sclafani RA, Rodman DM (2001) p27(Kip1) is important in modulating pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 25:652–658

    PubMed  CAS  Google Scholar 

  69. Yu L, Quinn DA, Garg HG, Hales CA (2005) Cyclin-dependent kinase inhibitor p27Kip1, but not p21WAF1/Cip1, is required for inhibition of hypoxia-induced pulmonary hypertension and remodeling by heparin in mice. Circ Res 97:937–945. doi:10.1161/01.RES.0000188211.83193.1a

    Article  PubMed  CAS  Google Scholar 

  70. Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J, Voelkel NF, Ishizaki T (2011) p53 gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol. doi:10.1152/ajplung.00286.2010

  71. Chen SJ, Wang YB, Chen O, Zhu XB, Ma Y (2008) Effect of p21 gene transfection mediated by replication deficient adenovirus on the pulmonary hypertensive rat model. Zhonghua Er Ke Za Zhi 46:139–142

    PubMed  Google Scholar 

  72. Ghofrani HA, Morrell NW, Hoeper MM, Olschewski H, Peacock AJ, Barst RJ, Shapiro S, Golpon H, Toshner M, Grimminger F, Pascoe S (2010) Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am J Respir Crit Care Med 182:1171–1177. doi:10.1164/rccm.201001-0123OC

    Article  PubMed  CAS  Google Scholar 

  73. Gomberg-Maitland M, Maitland ML, Barst RJ, Sugeng L, Coslet S, Perrino TJ, Bond L, Lacouture ME, Archer SL, Ratain MJ (2010) A dosing/cross-development study of the multikinase inhibitor sorafenib in patients with pulmonary arterial hypertension. Clin Pharmacol Ther 87:303–310. doi:10.1038/clpt.2009.217

    Article  PubMed  CAS  Google Scholar 

  74. Cheng H, Force T (2010) Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 106:21–34. doi:10.1161/CIRCRESAHA.109.206920

    Article  PubMed  CAS  Google Scholar 

  75. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi:10.1016/j.cell.2004.12.035

    Article  PubMed  CAS  Google Scholar 

  76. Chiosea S, Jelezcova E, Chandran U, Luo J, Mantha G, Sobol RW, Dacic S (2007) Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res 67:2345–2350. doi:10.1158/0008-5472.CAN-06-3533

    Article  PubMed  CAS  Google Scholar 

  77. Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J et al (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. doi:10.1084/jem.20101812

  78. Wu W, Lin Z, Zhuang Z, Liang X (2009) Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev 18:50–55

    Article  PubMed  CAS  Google Scholar 

  79. Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, Zhao J, Majerciak V, Gaur AB, Chen S, Miller SS (2010) MicroRNA-204/211 alters epithelial physiology. FASEB J. doi:10.1096/fj.08-125856

  80. Senis YA, Tomlinson MG, Ellison S, Mazharian A, Lim J, Zhao Y, Kornerup KN, Auger JM, Thomas SG, Dhanjal T et al (2009) The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood 113:4942–4954. doi:10.1182/blood-2008-08-174318

    Article  PubMed  CAS  Google Scholar 

  81. Wu JH, Goswami R, Cai X, Exum ST, Huang X, Zhang L, Brian L, Premont RT, Peppel K, Freedman NJ (2006) Regulation of the platelet-derived growth factor receptor-beta by G protein-coupled receptor kinase-5 in vascular smooth muscle cells involves the phosphatase Shp2. J Biol Chem 281:37758–37772. doi:10.1074/jbc.M605756200

    Article  PubMed  CAS  Google Scholar 

  82. Brock M, Trenkmann M, Gay RE, Michel BA, Gay S, Fischler M, Ulrich S, Speich R, Huber LC (2009) Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res 104:1184–1191

    Article  PubMed  CAS  Google Scholar 

  83. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438. doi:10.1158/0008-5472.CAN-07-1585

    Article  PubMed  CAS  Google Scholar 

  84. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593. doi:4436

    Article  PubMed  CAS  Google Scholar 

  85. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35:856–867. doi:10.1016/j.molcel.2009.09.006

    Article  PubMed  CAS  Google Scholar 

  86. Fasanaro P, Greco S, Lorenzi M, Pescatori M, Brioschi M, Kulshreshtha R, Banfi C, Stubbs A, Calin GA, Ivan M et al (2009) An integrated approach for experimental target identification of hypoxia-induced miR-210. J Biol Chem 284:35134–35143. doi:10.1074/jbc.M109.052779

    Article  PubMed  CAS  Google Scholar 

  87. Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, Li C, O'Brien-Jenkins A, Katsaros D, Weber BL, Simon C et al (2008) miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 7:255–264. doi:5297

    Article  PubMed  CAS  Google Scholar 

  88. Chen Z, Li Y, Zhang H, Huang P, Luthra R (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29:4362–4368. doi:10.1038/onc.2010.193

    Article  PubMed  CAS  Google Scholar 

  89. Caruso P, Maclean MR, Khanin R, McClure J, Soon E, Southwood M, McDonald RA, Greig JA, Robertson KE, Masson R et al (2010) Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol. doi:10.1161/ATVBAHA.109.202028

  90. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61. doi:10.1038/nature07086

    Article  PubMed  CAS  Google Scholar 

  91. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39:373–384. doi:10.1016/j.molcel.2010.07.011

    Article  PubMed  CAS  Google Scholar 

  92. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588

    Article  PubMed  CAS  Google Scholar 

  93. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ (2011) Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. doi:10.1038/mt.2011.48

  94. Patton J (1996) Mechanisms of macromolecular absorption by the lungs. Adv Drug Deliv Rev 19:3–36

    Article  CAS  Google Scholar 

  95. Gessler T, Seeger W, Schmehl T (2008) Inhaled prostanoids in the therapy of pulmonary hypertension. J Aerosol Med Pulm Drug Deliv 21:1–12. doi:10.1089/jamp. 2007.0657

    Article  PubMed  CAS  Google Scholar 

  96. Olschewski H, Hoeper MM, Behr J, Ewert R, Meyer A, Borst MM, Winkler J, Pfeifer M, Wilkens H, Ghofrani HA et al (2010) Long-term therapy with inhaled iloprost in patients with pulmonary hypertension. Respir Med 104:731–740. doi:10.1016/j.rmed.2010.01.008

    Article  PubMed  Google Scholar 

  97. Lam JK, Liang W, Chan HK (2011) Pulmonary delivery of therapeutic siRNA. Adv Drug Deliv Rev. doi:10.1016/j.addr.2011.02.006

  98. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184. doi:10.1038/nrg2006

    Article  PubMed  CAS  Google Scholar 

  99. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899. doi:10.1038/nature06783

    Article  PubMed  CAS  Google Scholar 

  100. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 1803:1231–1243. doi:10.1016/j.bbamcr.2010.06.013

    Article  PubMed  CAS  Google Scholar 

  101. Liu XG, Zhu WY, Huang YY, Ma LN, Zhou SQ, Wang YK, Zeng F, Zhou JH, Zhang YK (2011) High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer. Med Oncol. doi:10.1007/s12032-011-9923-y

  102. McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A (2011) Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. doi:10.1373/clinchem.2010.157198

  103. Edwards DA, Ben-Jebria A, Langer R (1998) Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol 85:379–385

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank the “Société Québécoise d'Hypertension Arterielle” for the scholarship attributed to RP. This work was supported by the Heart and Stroke Foundation of Canada (HSFC), the Canadian Institute for Health Research (CIHR), and the Canadian Research Chair (CRC) to SB.

Disclosures

No conflict to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Bonnet.

Additional information

Roxane Paulin and Audrey Courboulin equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulin, R., Courboulin, A., Barrier, M. et al. From oncoproteins/tumor suppressors to microRNAs, the newest therapeutic targets for pulmonary arterial hypertension. J Mol Med 89, 1089–1101 (2011). https://doi.org/10.1007/s00109-011-0788-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0788-5

Keywords

Navigation