Skip to main content
Log in

Arsenic trioxide induces autophagy and apoptosis in human glioma cells in vitro and in vivo through downregulation of survivin

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Gliomas are the most aggressive of all human malignancies. Survivin is overexpressed in gliomas, and overexpression of survivin is associated with the progression of gliomas and the poor prognosis of glioma patients. Arsenic trioxide (ATO) is used in patients with acute promyelocytic leukemia and is active in vitro in several solid tumor cell lines. In the present study, the human glioma cell line U118-MG was used to investigate the anti-cancer effect of ATO in vitro and in vivo. The molecular mechanisms of the relationship between cell death (autophagy and apoptosis) and survivin were analyzed. ATO reduced cell viability through an increase in mitotic cells in a concentration-dependent manner. The mechanisms of ATO-induced autophagy and apoptosis were mediated by the inhibition of PI3K/Akt and the activation of MAPK signaling pathways. The ATO treatment of U118-MG cells pre-treated with specific chemical inhibitors of PI3K/AKT and MAPK significantly changed the cytotoxicity and the expression of survivin, suggesting that survivin plays a pivotal role in ATO-induced cell death. When U118-MG cells were transfected with survivin shRNA, the results demonstrated a significant increase in apoptotic and autophagic cells. In in vivo studies, the ATO treatment of SCID mice showed a significant tumor growth delay time and the decreased expression of survivin in tumor tissue. An important result from the current study is the finding that survivin could suppress both autophagy and apoptosis in glioma cells. This study suggests that ATO treatment or survivin inhibition could be a novel therapeutic strategy in malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhen HN, Li LW, Zhang W, Fei Z, Shi CH, Yang TT, Bai WT, Zhang X (2007) Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int J Oncol 31:1111–1117

    PubMed  CAS  Google Scholar 

  2. Dumitru CA, Sandalcioglu IE, Wagner M, Weller M, Gulbins E (2009) Lysosomal ceramide mediates gemcitabine-induced death of glioma cells. J Mol Med 87:1123–1132

    Article  PubMed  CAS  Google Scholar 

  3. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  PubMed  CAS  Google Scholar 

  4. Zhang TD, Chen GQ, Wang ZG, Wang ZY, Chen SJ, Chen Z (2001) Arsenic trioxide, a therapeutic agent for APL. Oncogene 20:7146–7153

    Article  PubMed  CAS  Google Scholar 

  5. Liu SY, Wen CY, Lee YJ, Lee TC (2010) XPC silencing sensitizes glioma cells to arsenic trioxide via increased oxidative damage. Toxicol Sci 116:183–193

    Article  PubMed  CAS  Google Scholar 

  6. Lee PC, Kakadiya R, Su TL, Lee TC (2010) Combination of bifunctional alkylating agent and arsenic trioxide synergistically suppresses the growth of drug-resistant tumor cells. Neoplasia 12:376–387

    PubMed  CAS  Google Scholar 

  7. Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci USA 101:4578–4583

    Article  PubMed  CAS  Google Scholar 

  8. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832–37839

    Article  PubMed  CAS  Google Scholar 

  9. Lu J, Chew EH, Holmgren A (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci USA 104:12288–12293

    Article  PubMed  CAS  Google Scholar 

  10. Li Y, Qu X, Qu J, Zhang Y, Liu J, Teng Y, Hu X, Hou K, Liu Y (2009) Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Lett 284:208–215

    Article  PubMed  CAS  Google Scholar 

  11. Liu Q, Hilsenbeck S, Gazitt Y (2003) Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 101:4078–4087

    Article  PubMed  CAS  Google Scholar 

  12. Zhao S, Zhang J, Zhang X, Dong X, Sun X (2008) Arsenic trioxide induces different gene expression profiles of genes related to growth and apoptosis in glioma cells dependent on the p53 status. Mol Biol Rep 35:421–429

    Article  PubMed  CAS  Google Scholar 

  13. Wu YC, Yen WY, Yih LH (2008) Requirement of a functional spindle checkpoint for arsenite-induced apoptosis. J Cell Biochem 105:678–687

    Article  PubMed  CAS  Google Scholar 

  14. Taylor BF, McNeely SC, Miller HL, Lehmann GM, McCabe MJ Jr, States JC (2006) p53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1. J Pharmacol Exp Ther 318:142–151

    Article  PubMed  CAS  Google Scholar 

  15. Tabellini G, Cappellini A, Tazzari PL, Fala F, Billi AM, Manzoli L, Cocco L, Martelli AM (2005) Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 202:623–634

    Article  PubMed  CAS  Google Scholar 

  16. Ramos AM, Fernandez C, Amran D, Sancho P, de Blas E, Aller P (2005) Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood 105:4013–4020

    Article  PubMed  CAS  Google Scholar 

  17. Walker AM, Stevens JJ, Tchounwou PB (2010) Arsenic trioxide modulates DNA synthesis and apoptosis in lung carcinoma cells. Met Ions Biol Med 7:1996–2007

    PubMed  CAS  Google Scholar 

  18. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  19. Kang YH, Lee SJ (2008) The role of p38 MAPK and JNK in Arsenic trioxide-induced mitochondrial cell death in human cervical cancer cells. J Cell Physiol 217:23–33

    Article  PubMed  CAS  Google Scholar 

  20. Ryan BM, O'Donovan N, Duffy MJ (2009) Survivin: a new target for anti-cancer therapy. Cancer Treat Rev 35:553–562

    Article  PubMed  CAS  Google Scholar 

  21. Jiao BH, Yao ZG, Geng SM, Zuo SH (2004) Expression of survivin, a novel apoptosis inhibitor and cell cycle regulatory protein, in human gliomas. Chin Med J (Engl) 117:612–614

    CAS  Google Scholar 

  22. Roca H, Varsos Z, Pienta KJ (2008) CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 283:25057–25073

    Article  PubMed  CAS  Google Scholar 

  23. Cheng Y, Chang LW, Tsou TC (2006) Mitogen-activated protein kinases mediate arsenic-induced down-regulation of survivin in human lung adenocarcinoma cells. Arch Toxicol 80:310–318

    Article  PubMed  CAS  Google Scholar 

  24. Chiu HW, Ho SY, Guo HR, Wang YJ (2009) Combination treatment with arsenic trioxide and irradiation enhances autophagic effects in U118-MG cells through increased mitotic arrest and regulation of PI3K/Akt and ERK1/2 signaling pathways. Autophagy 5:472–483

    Article  PubMed  CAS  Google Scholar 

  25. Chiu HW, Lin JH, Chen YA, Ho SY, Wang YJ (2010) Combination treatment with arsenic trioxide and irradiation enhances cell-killing effects in human fibrosarcoma cells in vitro and in vivo through induction of both autophagy and apoptosis. Autophagy 6:353–365

    Article  PubMed  CAS  Google Scholar 

  26. Osborne CK, Coronado EB, Robinson JP (1987) Human breast cancer in the athymic nude mouse: cytostatic effects of long-term antiestrogen therapy. Eur J Cancer Clin Oncol 23:1189–1196

    Article  PubMed  CAS  Google Scholar 

  27. Cai X, Yu Y, Huang Y, Zhang L, Jia PM, Zhao Q, Chen Z, Tong JH, Dai W, Chen GQ (2003) Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells. Leukemia 17:1333–1337

    Article  PubMed  CAS  Google Scholar 

  28. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  29. Goussetis DJ, Platanias LC (2010) Arsenic trioxide and the PI3K/AKT pathway in chronic lymphocytic leukemia. Clin Cancer Res 16:4311–4312

    Article  PubMed  CAS  Google Scholar 

  30. Stevens JJ, Graham B, Walker AM, Tchounwou PB, Rogers C (2010) The effects of arsenic trioxide on DNA synthesis and genotoxicity in human colon cancer cells. Int J Environ Res Public Health 7:2018–2032

    Article  PubMed  CAS  Google Scholar 

  31. Walker AM, Stevens JJ, Ndebele K, Tchounwou PB (2010) Arsenic trioxide modulates DNA synthesis and apoptosis in lung carcinoma cells. Int J Environ Res Public Health 7:1996–2007

    Article  PubMed  CAS  Google Scholar 

  32. Tingting R, Wei G, Changliang P, Xinchang L, Yi Y (2010) Arsenic trioxide inhibits osteosarcoma cell invasiveness via MAPK signaling pathway. Cancer Biol Ther 10:251–257

    Article  PubMed  Google Scholar 

  33. Zhang H, Kong X, Kang J, Su J, Li Y, Zhong J, Sun L (2009) Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 110:376–388

    Article  PubMed  CAS  Google Scholar 

  34. Cheng Y, Qiu F, Ikejima T (2009) Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells. Autophagy 5:430–431

    Article  PubMed  Google Scholar 

  35. Liu B, Cheng Y, Zhang B, Bian HJ, Bao JK (2009) Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway. Cancer Lett 275:54–60

    Article  PubMed  CAS  Google Scholar 

  36. Jaakkola PM, Pursiheimo JP (2009) p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy 5:410–412

    Article  PubMed  CAS  Google Scholar 

  37. Colosetti P, Puissant A, Robert G, Luciano F, Jacquel A, Gounon P, Cassuto JP, Auberger P (2009) Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy 5:1092–1098

    Article  PubMed  CAS  Google Scholar 

  38. Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B (2010) Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 6:322–329

    Article  PubMed  CAS  Google Scholar 

  39. Zhou F, Yang Y, Xing D (2011) Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 278:403–413

    Article  PubMed  CAS  Google Scholar 

  40. Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T (2009) A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 8:100

    Article  PubMed  Google Scholar 

  41. Wong CH, Iskandar KB, Yadav SK, Hirpara JL, Loh T, Pervaiz S (2010) Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PLoS ONE 5:e9996

    Article  PubMed  Google Scholar 

  42. Zhen HN, Zhang X, Hu PZ, Yang TT, Fei Z, Zhang JN, Fu LA, He XS, Ma FC, Wang XL (2005) Survivin expression and its relation with proliferation, apoptosis, and angiogenesis in brain gliomas. Cancer 104:2775–2783

    Article  PubMed  CAS  Google Scholar 

  43. Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H, Sugiyama K, Arita K, Kurisu K (2003) Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97:1077–1083

    Article  PubMed  Google Scholar 

  44. Ulasov IV, Tyler MA, Zhu ZB, Han Y, He TC, Lesniak MS (2009) Oncolytic adenoviral vectors which employ the survivin promoter induce glioma oncolysis via a process of beclin-dependent autophagy. Int J Oncol 34:729–742

    PubMed  CAS  Google Scholar 

  45. Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8:61–70

    Article  PubMed  CAS  Google Scholar 

  46. Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S (2006) Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA 103:6332–6337

    Article  PubMed  CAS  Google Scholar 

  47. Chun YJ, Park IC, Park MJ, Woo SH, Hong SI, Chung HY, Kim TH, Lee YS, Rhee CH, Lee SJ (2002) Enhancement of radiation response in human cervical cancer cells in vitro and in vivo by arsenic trioxide (As2O3). FEBS Lett 519:195–200

    Article  PubMed  CAS  Google Scholar 

  48. Yeh KY, Chang JW, Li YY, Wang CH, Wang HM (2011) Tumor growth inhibition of metastatic nasopharyngeal carcinoma cell lines by low dose of arsenic trioxide via alteration of cell cycle progression and induction of apoptosis. Head Neck 33(5):734–742

    Article  PubMed  Google Scholar 

  49. Scholz C, Wieder T, Starck L, Essmann F, Schulze-Osthoff K, Dorken B, Daniel PT (2005) Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway. Oncogene 24:1904–1913

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Council, Taiwan (NSC 98-2314-B-006-034-MY2).

Disclosure statement

The authors report no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, HW., Ho, YS. & Wang, YJ. Arsenic trioxide induces autophagy and apoptosis in human glioma cells in vitro and in vivo through downregulation of survivin. J Mol Med 89, 927–941 (2011). https://doi.org/10.1007/s00109-011-0763-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0763-1

Keywords

Navigation