Skip to main content

Advertisement

Log in

Development of genetically engineered CD4+ and CD8+ T cells expressing TCRs specific for a M. tuberculosis 38-kDa antigen

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cell-mediated immunity is critical to the clearance of Mycobacterium tuberculosis due to the primarily intracellular niche of this pathogen. Adoptive transfer of M. tuberculosis-specific effector T cells has been shown to confer immunity to M. tuberculosis-infected recipients resulting in M. tuberculosis clearance. However, it is difficult to generate sufficient numbers of M. tuberculosis antigen-specific T cells in a short time. Recent studies have developed T cell receptor (TCR) gene-modified T cells that allow for the rapid generation of large numbers of antigen-specific T cells. Many TCRs that target various tumor and viral antigens have now been isolated and shown to have functional activity. Nevertheless, TCRs specific for intracellular bacterial antigens (including M. tuberculosis antigens) have yet to be isolated and their functionality confirmed. We isolated M. tuberculosis 38-kDa antigen-specific HLA class I and class II-restricted TCRs and modified the TCR gene C regions by substituting nine amino acids with their murine TCR homologs (minimal murinization). Results showed that both wild-type and minimal murinized TCR genes were successfully cloned into retroviral vectors and transduced into primary CD4+ and CD8+ T cells and displayed anti-M. tuberculosis activity. As expected, minimal murinized TCRs displayed higher cell surface expression levels and stronger anti-M. tuberculosis activity than wild-type TCRs. To the best of our knowledge, this is the first report describing TCRs targeting M. tuberculosis antigens and this investigation provides the basis for future TCR gene-based immunotherapies that can be designed for the treatment of immunocompromised M. tuberculosis-infected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129 [PubMed: 11244032]

    Article  PubMed  CAS  Google Scholar 

  2. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C et al (1998) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121–125 [PubMed: 9756476]

    Article  PubMed  CAS  Google Scholar 

  3. Berger C, Turtle CJ, Jensen MC, Riddell SR (2009) Adoptive transfer of virus-specific and tumor-specific T cell immunity. Curr Opin Immunol 21:224–232 [PubMed: 19304470]

    Article  PubMed  CAS  Google Scholar 

  4. Woodworth JS, Wu Y, Behar SM (2008) Mycobacterium tuberculosis-specific CD8+ T cells require perforin to kill target cells and provide protection in vivo. J Immunol 181:8595–8603 [PubMed: 19050279]

    PubMed  CAS  Google Scholar 

  5. Duffy D, Dawoodji A, Agger EM, Andersen P, Westermann J, Bell EB (2009) Immunological memory transferred with CD4 T cells specific for tuberculosis antigens Ag85B-TB10.4: persisting antigen enhances protection. PLoS ONE 4:e8272 [PubMed: 20011592]

    Article  PubMed  Google Scholar 

  6. Kitsukawa K, Higa F, Takushi Y, Miyagi H, Kakazu T, Fukuhara H, Nakamura H, Kaneshima H, Irabu Y, Shimoji K et al (1991) Adoptive immunotherapy for pulmonary tuberculosis caused by multi-resistant bacteria using autologous peripheral blood leucocytes sensitized with killed Mycobacterium tuberculosis bacteria. Kekkaku 66:563–575 [PubMed: 1942728]

    PubMed  CAS  Google Scholar 

  7. Kikkawa K (1992) Adoptive immunotherapy of refractory pulmonary tuberculosis using sensitized autologous lymphocytes. Kekkaku 67:684–686 [PubMed: 1453574]

    PubMed  CAS  Google Scholar 

  8. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393 [PubMed: 16622476]

    Article  PubMed  CAS  Google Scholar 

  9. Thomas S, Stauss HJ, Morris EC (2010) Molecular immunology lessons from therapeutic T-cell receptor gene transfer. Immunology 129:170–177 [PubMed: 20561357]

    Article  PubMed  CAS  Google Scholar 

  10. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129 [PubMed: 16946036]

    Article  PubMed  CAS  Google Scholar 

  11. Kessels HW, Wolkers MC, van den Boom MD, van der Valk MA, Schumacher TN (2001) Immunotherapy through TCR gene transfer. Nat Immunol 2:957–961 [PubMed: 11577349]

    Article  PubMed  CAS  Google Scholar 

  12. Leisegang M, Engels B, Meyerhuber P, Kieback E, Sommermeyer D, Xue SA, Reuss S, Stauss H, Uckert W (2008) Enhanced functionality of T cell receptor-redirected T cells is defined by the transgene cassette. J Mol Med 86:573–583 [PubMed: 18335188]

    Article  PubMed  CAS  Google Scholar 

  13. Scholten KB, Kramer D, Kueter EW, Graf M, Schoedl T, Meijer CJ, Schreurs MW, Hooijberg E (2006) Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 119:135–145 [PubMed: 16458072]

    Article  PubMed  CAS  Google Scholar 

  14. Voss RH, Willemsen RA, Kuball J, Grabowski M, Engel R, Intan RS, Guillaume P, Romero P, Huber C, Theobald M (2008) Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. J Immunol 180:391–401 [PubMed: 18097040]

    PubMed  CAS  Google Scholar 

  15. Sebestyén Z, Schooten E, Sals T, Zaldivar I, San José E, Alarcón B, Bobisse S, Rosato A, Szöllosi J, Gratama JW et al (2008) Human TCR that incorporate CD3zeta induce highly preferred pairing between TCRalpha and beta chains following gene transfer. J Immunol 180:7736–7746 [PubMed: 18490778]

    PubMed  Google Scholar 

  16. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA (2007) Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 67:3898–3903 [PubMed: 17440104]

    Article  PubMed  CAS  Google Scholar 

  17. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C, Greenberg PD (2007) Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109:2331–2338 [PubMed: 17082316]

    Article  PubMed  CAS  Google Scholar 

  18. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA (2006) Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 66:8878–8886 [PubMed: 16951205]

    Article  PubMed  CAS  Google Scholar 

  19. Bialer G, Horovitz-Fried M, Ya'acobi S, Morgan RA, Cohen CJ (2010) Selected murine residues endow human TCR with enhanced tumor recognition. J Immunol 184:6232–6241 [PubMed: 20427762]

    Article  PubMed  CAS  Google Scholar 

  20. Sommermeyer D, Uckert W (2010) Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J Immunol 184:6223–6231, PubMed: 20483785]

    Article  PubMed  CAS  Google Scholar 

  21. Zhou J, Weng D, Zhou F, Pan K, Song H, Wang Q, Wang H, Wang H, Li Y, Huang L et al (2009) Patient-derived renal cell carcinoma cells fused with allogeneic dendritic cells elicit anti-tumor activity: in vitro results and clinical responses. Cancer Immunol Immunother 58:1587–1597 [PubMed: 19221746]

    Article  PubMed  CAS  Google Scholar 

  22. Luo W, Ma L, Wen Q, Wang N, Zhou MQ, Wang XN (2008) Analysis of the interindividual conservation of T cell receptor alpha- and beta-chain variable regions gene in the peripheral blood of patients with systemic lupus erythematosus. Clin Exp Immunol 154:316–324 [PubMed: 18811695]

    Article  PubMed  CAS  Google Scholar 

  23. Batchu RB, Moreno AM, Szmania S, Gupta SK, Zhan F, Rosen N, Kozlowski M, Spencer T, Spagnoli GC, Shaughnessy J et al (2003) High-level expression of cancer/testis antigen NY-ESO-1 and human granulocyte-macrophage colony-stimulating factor in dendritic cells with a bicistronic retroviral vector. Hum Gene Ther 14:1333–1345 [PubMed: 14503968]

    Article  PubMed  CAS  Google Scholar 

  24. Kalamasz D, Long SA, Taniguchi R, Buckner JH, Berenson RJ, Bonyhadi M (2004) Optimization of human T-cell expansion ex vivo using magnetic beads conjugated with anti-CD3 and anti-CD28 antibodies. J Immunother 27:405–418 [PubMed: 15314550]

    Article  PubMed  CAS  Google Scholar 

  25. Smith SM, Klein MR, Malin AS, Sillah J, McAdam KP, Dockrell HM (2002) Decreased IFN- gamma and increased IL-4 production by human CD8(+) T cells in response to Mycobacterium tuberculosis in tuberculosis patients. Tuberc Edinb 82:7–13 [PubMed: 11914057]

    Article  CAS  Google Scholar 

  26. Popmihajlov Z, Santori FR, Gebreselassie D, Sandler AD, Vukmanovic S (2010) Effective adoptive therapy of tap-deficient lymphoma using diverse high avidity alloreactive T cells. Cancer Immunol Immunother 59:629–633 [PubMed: 20020123]

    Article  PubMed  Google Scholar 

  27. Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207:1409–1420 [PubMed: 20547826]

    Article  PubMed  CAS  Google Scholar 

  28. Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA, Kuball J, Ruppert T, Bolhuis RL, Melief CJ, Huber C et al (2001) Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2:962–970 [PubMed: 11577350]

    Article  PubMed  CAS  Google Scholar 

  29. Zhang SL, Zhao JW, Sun ZQ, Yang EZ, Yan JH, Zhao Q, Zhang GL, Zhang HM, Qi YM, Wang HH et al (2009) Development and evaluation of a novel multiple-antigen ELISA for serodiagnosis of tuberculosis. Tuberc Edinb 89:278–284 [PubMed: 19559650]

    Article  CAS  Google Scholar 

  30. Zhu X, Venkataprasad N, Thangaraj HS, Hill M, Singh M, Ivanyi J, Vordermeier HM (1997) Functions and specificity of T cells following nucleic acid vaccination of mice against Mycobacterium tuberculosis infection. J Immunol 158:5921–5926 [PubMed: 9190945]

    PubMed  CAS  Google Scholar 

  31. Jorritsma A, Schumacher TN, Haanen JB (2009) Immunotherapeutic strategies: the melanoma example. Immunotherapy 1:679–690 [PubMed: 20635992]

    PubMed  CAS  Google Scholar 

  32. Currier JR, Robinson MA (2001) Spectratype/immunoscope analysis of the expressed TCR repertoire. Curr Protoc Immunol Chapter 10: Unit 10.28 [PubMed: 18432693]

    Google Scholar 

  33. Sun JC, Bevan MJ (2003) Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300:339–342 [PubMed: 12690202]

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30972680), the National Science and Technology Key Projects on Major Infectious Diseases (2008ZX10003-005, 2008ZX10003-012), and The State Key Laboratory for Molecular Virology and Genetic Engineering (2010KF06).

Disclosure statement

The authors declare no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Jin or Li Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, W., Zhang, XB., Huang, YT. et al. Development of genetically engineered CD4+ and CD8+ T cells expressing TCRs specific for a M. tuberculosis 38-kDa antigen. J Mol Med 89, 903–913 (2011). https://doi.org/10.1007/s00109-011-0760-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0760-4

Keywords

Navigation