Skip to main content

Advertisement

Log in

Mammalian MST2 kinase and human Salvador activate and reduce estrogen receptor alpha in the absence of ligand

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 21 February 2012

Abstract

Mammalian MST2 kinase plays an important role in cell proliferation, survival, and apoptosis. In search of interacting proteins of MST2, we found that estrogen receptor α (ERα) co-immunoprecipitates with MST2 and its adaptor protein human Salvador (hSAV). Using reporter assays, we observed that overexpression of MST2 and hSAV leads to ligand-independent activation of ERα in human breast cancer MCF-7 cells, which was attenuated by the knockdown of hSAV. Furthermore, using truncated mutants of hSAV, we observed that the C terminus of hSAV is necessary and sufficient for the induction of ERα transactivation. The expression of hSAV and MST2 results in the phosphorylation of ERα at serine residues 118 and 167 and represses ERα expression. We then investigated the incidence of MST2 and ERα expression with other tumor biomarkers using commercially available tissue microarrays. Among 40 breast cancer samples analyzed, 60% (24 out of 40) expressed MST2. Nineteen among the 40 cases were MST2-positive and ERα-negative, implying a correlation between expressions of MST2 with loss of ERα in breast tumor samples. This study suggests that MST and hSAV act as novel co-regulators of ERα and may play an important role in breast cancer pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Creasy CL, Chernoff J (1995) Cloning and characterization of a human protein kinase with homology to Ste20. J Biol Chem 270:21695–21700

    Article  CAS  PubMed  Google Scholar 

  2. Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber DA, Hariharan IK (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110:467–478

    Article  CAS  PubMed  Google Scholar 

  3. Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF, Seed B, Avruch J (2002) Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol 12:253–265

    Article  CAS  PubMed  Google Scholar 

  4. Rabizadeh S, Xavier RJ, Ishiguro K, Bernabeortiz J, Lopez-Ilasaca M, Khokhlatchev A, Mollahan P, Pfeifer GP, Avruch J, Seed B (2004) The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J Biol Chem 279:29247–29254

    Article  CAS  PubMed  Google Scholar 

  5. Lee KK, Yonehara S (2002) Phosphorylation and dimerization regulate nucleocytoplasmic shuttling of mammalian STE20-like kinase (MST). J Biol Chem 277:12351–12358

    Article  CAS  PubMed  Google Scholar 

  6. Ura S, Masuyama N, Graves JD, Gotoh Y (2001) Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc Natl Acad Sci USA 98:10148–10153

    Article  CAS  PubMed  Google Scholar 

  7. Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Beeser A, Etkin LD, Chernoff J, Earnshaw WC, Allis CD (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113:507–517

    Article  CAS  PubMed  Google Scholar 

  8. Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ, Halder G (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129:5719–5730

    Article  CAS  PubMed  Google Scholar 

  9. Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114:457–467

    Article  CAS  PubMed  Google Scholar 

  10. Wu S, Huang J, Dong J, Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and warts. Cell 114:445–456

    Article  CAS  PubMed  Google Scholar 

  11. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villén J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A (2009) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125:987–1001

    Article  Google Scholar 

  12. Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, Chen Y, Park O, Chang J, Simpson RM, Wang CY, Gao B, Jiang J, Yang Y (2010) Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA 107:1431–1436

    Article  CAS  PubMed  Google Scholar 

  13. Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, Wang Y, Halder G, Finegold MJ, Lee JS, Johnson RL (2010) Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci USA 107:1437–1442

    Article  CAS  PubMed  Google Scholar 

  14. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112

    Article  PubMed  Google Scholar 

  15. Ward RD, Weigel NL (2009) Steroid receptor phosphorylation: assigning function to site-specific phosphorylation. Biofactors 35:528–36

    Article  CAS  PubMed  Google Scholar 

  16. Catalano S, Mauro L, Marsico S, Giordano C, Rizza P, Rago V, Montanaro D, Maggiolini M, Panno ML, Andó S (2004) Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J Biol Chem 279:19908–19915

    Article  CAS  PubMed  Google Scholar 

  17. Leong H, Riby JE, Firestone GL, Bjeldanes LF (2004) Potent ligand-independent estrogen receptor activation by 3, 3′-diindolylmethane is mediated by cross talk between the protein kinase A and mitogen-activated protein kinase signaling pathways. Mol Endocrinol 18:291–302

    Article  CAS  PubMed  Google Scholar 

  18. Rahman M, Lax SF, Sutter CH, Tran QT, Stevens GL, Emmert GL, Russo J, Santen RJ, Sutter TR (2008) CYP1B1 is not a major determinant of the disposition of aromatase inhibitors in epithelial cells of invasive ductal carcinoma. Drug Metab Dispos 36:963–970

    Article  CAS  PubMed  Google Scholar 

  19. Callus BA, Verhagen AM, Vaux DL (2006) Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J 273:4264–4276

    Article  CAS  PubMed  Google Scholar 

  20. Valley CC, Solodin NM, Powers GL, Ellison SJ, Alarid ET (2008) Temporal variation in estrogen receptor-alpha protein turnover in the presence of estrogen. J Mol Endocrinol 40:23–34

    Article  CAS  PubMed  Google Scholar 

  21. Bunone G, Briand PA, Miksicek RJ, Picard D (1996) Activation of the unliganded estrogen receptor by EFG involves the MAP kinase pathway and direct phosphorylation. EMBO J 15:2174–2183

    CAS  PubMed  Google Scholar 

  22. Kilili GK, Kyriakis JM (2010) Mammalian Ste20-like kinase (Mst2) indirectly supports Raf-1/ERK pathway activity via maintenance of protein phosphatase-2A catalytic subunit levels and consequent suppression of inhibitory Raf-1 phosphorylation. J Biol Chem 285:15076–87

    Article  CAS  PubMed  Google Scholar 

  23. Oñate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1367

    Article  PubMed  Google Scholar 

  24. Lonard DM, O’Malley BW (2007) Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 27:691–700

    Article  CAS  PubMed  Google Scholar 

  25. Dhananjayan SC, Ramamoorthy S, Khan OY, Ismail A, Sun J, Slingerland J, O’Malley BW, Nawaz Z (2009) WW domain binding protein-2, an E6-associated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Mol Endocrinol 20:2343–2354

    Article  Google Scholar 

  26. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761

    Article  CAS  PubMed  Google Scholar 

  27. Wormke M, Stoner M, Saville B, Walker K, Abdelrahim M, Burghardt R, Safe S (2003) The aryl hydrocarbon receptor mediates degradation of estrogen receptor alpha through activation of proteasomes. Mol Cell Biol 23:1843–1855

    Article  CAS  PubMed  Google Scholar 

  28. Clark DE, Poteet-Smith CE, Smith JA, Lannigan DA (2001) Rsk2 allosterically activates estrogen receptor alpha by docking to the hormone-binding domain. EMBO J 20:3484–3494

    Article  CAS  PubMed  Google Scholar 

  29. Vilgelm A, Lian Z, Wang H, Beauparlant SL, Klein-Szanto A, Ellenson LH, Di Cristofano A (2006) Akt-mediated phosphorylation and activation of estrogen receptor alpha is required for endometrial neoplastic transformation in Pten+/− mice. Cancer Res 66:3375–3380

    Article  CAS  PubMed  Google Scholar 

  30. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, Lu YY, Shelley SA, Nicosia SV, Cheng JQ (2001) Phosphatidylinositol-3-OH kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 61:5985–5991

    CAS  PubMed  Google Scholar 

  31. Cassoni P, Catalano MG, Sapino A, Marrocco T, Fazzari A, Bussolati G, Fortunati N (2002) Oxytocin modulates estrogen receptor alpha expression and function in MCF7 human breast cancer cells. Int J Oncol 21:375–378

    CAS  PubMed  Google Scholar 

  32. Stoner M, Saville B, Wormke M, Dean D, Burghardt R, Safe S (2002) Hypoxia induces proteasome-dependent degradation of estrogen receptor alpha in ZR-75 breast cancer cells. Mol Endocrinol 16:2231–2242

    Article  CAS  PubMed  Google Scholar 

  33. Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, Skaar TC, Gomez B, O’Brien K, Wang Y, Hilakivi-Clarke LA (2003) Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22:7316–7339

    Article  CAS  PubMed  Google Scholar 

  34. Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, Zeng Q, Hong W (2008) A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68:2592–8

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R, Brugge JS, Dyson NJ, Haber DA (2009) YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11:1444–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (2009-0084887) and BK21 to YJL.

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YoungJoo Lee.

Additional information

Yeomyung Park and Joonwoo Park contributed equally to this study.

An erratum to this article is available at http://dx.doi.org/10.1007/s00109-012-0871-6.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 498 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y., Park, J., Lee, Y. et al. Mammalian MST2 kinase and human Salvador activate and reduce estrogen receptor alpha in the absence of ligand. J Mol Med 89, 181–191 (2011). https://doi.org/10.1007/s00109-010-0698-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0698-y

Keywords

Navigation