Skip to main content

Advertisement

Log in

Penetration of the blood–brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid

  • Rapid Communications
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is one of the most prevalent organisms responsible for nosocomial infections, and cases of community-acquired S. aureus infection have continued to increase despite widespread preventative measures. Pathologies attributed to S. aureus infection are diverse; ranging from dermal lesions to bacteremia, abscesses, and endocarditis. Reported cases of S. aureus-associated meningitis and brain abscesses have also increased in recent years, however, the precise mechanism whereby S. aureus leave the bloodstream and gain access to the central nervous system (CNS) are not known. Here we demonstrate for the first time that S. aureus efficiently adheres to and invades human brain microvascular endothelial cells (hBMEC), the single-cell layer which constitutes the blood–brain barrier (BBB). The addition of cytochalasin D, an actin microfilament aggregation inhibitor, strongly reduced bacterial invasion, suggesting an active hBMEC process is required for efficient staphylococcal uptake. Furthermore, mice injected with S. aureus exhibited significant levels of brain bacterial counts and histopathologic evidence of meningeal inflammation and brain abscess formation, indicating that S. aureus was able to breech the BBB in an experimental model of hematogenous meningitis. We found that a YpfP-deficient mutant, defective in lipoteichoic acid (LTA) membrane anchoring, exhibited a decreased ability to invade hBMEC and correlated to a reduced risk for the development of meningitis in vivo. Our results demonstrate that LTA-mediated penetration of the BBB may be a primary step in the pathogenesis of staphylococcal CNS disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Decker CF (2008) Pathogenesis of MRSA infections. Dis Mon 54:774–779. doi:10.1016/j.disamonth.2008.09.003

    Article  PubMed  Google Scholar 

  2. Gordon RJ, Lowy FD (2008) Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46(Suppl 5):S350–S359. doi:10.1086/533591

    Article  PubMed  CAS  Google Scholar 

  3. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  PubMed  CAS  Google Scholar 

  4. Diep BA, Otto M (2008) The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol 16:361–369. doi:10.1016/j.tim.2008.05.002

    Article  PubMed  CAS  Google Scholar 

  5. Jacobsson G, Gustafsson E, Andersson R (2008) Outcome for invasive Staphylococcus aureus infections. Eur J Clin Microbiol Infect Dis 27:839–848. doi:10.1007/s10096-008-0515-5

    Article  PubMed  CAS  Google Scholar 

  6. Otto M (2009) Looking toward basic science for potential drug discovery targets against community-associated MRSA. Med Res Rev DOI. doi:10.1002/med.20160

    Google Scholar 

  7. Foster TJ (2004) The Staphylococcus aureus "superbug". J Clin Invest 114:1693–1696. doi:10.1172/JCI23825

    PubMed  CAS  Google Scholar 

  8. Naber CK (2009) Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis 48(Suppl 4):S231–S237. doi:10.1086/598189

    Article  PubMed  Google Scholar 

  9. Saginur R, Suh KN (2008) Staphylococcus aureus bacteraemia of unknown primary source: where do we stand? Int J Antimicrob Agents 32(Suppl 1):S21–S25. doi:10.1016/j.ijantimicag.2008.06.008

    Article  PubMed  CAS  Google Scholar 

  10. Rubinstein E (2008) Staphylococcus aureus bacteraemia with known sources. Int J Antimicrob Agents 32(Suppl 1):S18–S20. doi:10.1016/j.ijantimicag.2008.06.006

    Article  PubMed  CAS  Google Scholar 

  11. Bloch O, Papadopoulos MC, Manley GT, Verkman AS (2005) Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem 95:254–262. doi:10.1111/j.1471-4159.2005.03362

    Article  PubMed  CAS  Google Scholar 

  12. Pedersen M, Benfield TL, Skinhoej P, Jensen AG (2006) Haematogenous Staphylococcus aureus meningitis. A 10-year nationwide study of 96 consecutive cases. BMC Infect Dis 6:49. doi:10.1186/1471-2334-6-49

    Article  PubMed  Google Scholar 

  13. Vartzelis G, Theodoridou M, Daikos GL, Dellagrammaticas H, Syriopoulou VP (2005) Brain abscesses complicating Staphylococcus aureus sepsis in a premature infant. Infection 33:36–38. doi:10.1007/s15010-005-4062-z

    Article  PubMed  CAS  Google Scholar 

  14. Courtney HS, von Hunolstein C, Dale JB, Bronze MS, Beachey EH, Hasty DL (1992) Lipoteichoic acid and M protein: dual adhesins of group A streptococci. Microb Pathog 12:199–208. doi:10.1016/0882-4010(92)90054-R

    Article  PubMed  CAS  Google Scholar 

  15. Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P (1999) Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 34:902–914. doi:10.1064/j.1365-2958-1999-01652.x

    Article  PubMed  CAS  Google Scholar 

  16. Grundling A, Schneewind O (2007) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol 189:2521–2530. doi:10.1128/JB.01683-06

    Article  PubMed  CAS  Google Scholar 

  17. Fedtke I, Mader D, Kohler T, Moll H, Nicholson G, Biswas R, Henseler K, Gotz F, Zahringer U, Peschel A (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091. doi:10.1111/j.1365-2958.2007.05854.x

    Article  PubMed  CAS  Google Scholar 

  18. Pattee PA (1981) Distribution of Tn551 insertion sites responsible for auxotrophy on the Staphylococcus aureus chromosome. J Bacteriol 145:479–488

    PubMed  CAS  Google Scholar 

  19. Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    PubMed  CAS  Google Scholar 

  20. Highlander SK, Hulten KG, Qin X, Jiang H, Yerrapragada S, Mason EO Jr, Shang Y, Williams TM, Fortunov RM, Liu Y, Igboeli O, Petrosino J, Tirumalai M, Uzman A, Fox GE, Cardenas AM, Muzny DM, Hemphill L, Ding Y, Dugan S, Blyth PR, Buhay CJ, Dinh HH, Hawes AC, Holder M, Kovar CL, Lee SL, Liu W, Nazareth LV, Wang Q, Zhou J, Kaplan SL, Weinstock GM (2007) Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus. BMC Microbiol 7:99. doi:10.1186/1471-2180-7-99

    Article  PubMed  CAS  Google Scholar 

  21. Wessels MR, Benedi V-J, Kasper DL, Heggen LM, Rubens CE (1991) Type III capsule and virulence of group B streptococci. In: Dunney GM, Cleary PP, McKay LL (eds) Genetics and molecular biology of streptococci, lactococci, and enterococci. American Society for Microbiology, Washington DC, pp 219–223

    Google Scholar 

  22. Doran KS, Engelson EJ, Khosravi A, Maisey HC, Fedtke I, Equils O, Michelsen KS, Arditi M, Peschel A, Nizet V (2005) Blood–brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest 115:2499–2507. doi:10.1172/JCI23829

    Article  PubMed  CAS  Google Scholar 

  23. Walker JA, Allen RL, Falmagne P, Johnson MK, Boulnois GJ (1987) Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae. Infect Immun 55:1184–1189

    PubMed  CAS  Google Scholar 

  24. Kim KS (2001) Escherichia coli translocation at the blood–brain barrier. Infect Immun 69:5217–5222

    Article  PubMed  CAS  Google Scholar 

  25. Stins MF, Prasadarao NV, Ibric L, Wass CA, Luckett P, Kim KS (1994) Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am J Pathol 145:1228–1236

    PubMed  CAS  Google Scholar 

  26. Nizet V, Kim KS, Stins M, Jonas M, Chi EY, Nguyen D, Rubens CE (1997) Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 65:5074–5081

    PubMed  CAS  Google Scholar 

  27. Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D, Hightower G, Mitchell TJ, Doran KS, Nizet V (2009) The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J Exp Med 206:1845–1852. doi:10.1084/jem.20090386

    Article  PubMed  CAS  Google Scholar 

  28. van Sorge NM, Ebrahimi CM, McGillivray SM, Quach D, Sabet M, Guiney DG, Doran KS (2008) Anthrax toxins inhibit neutrophil signaling pathways in brain endothelium and contribute to the pathogenesis of meningitis. PLoS ONE 3:e2964. doi:10.1371/journal.pone.0002964

    Article  PubMed  CAS  Google Scholar 

  29. Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 102:347–360. doi:10.1172/JCI2406

    Article  PubMed  CAS  Google Scholar 

  30. Kielian T, Haney A, Mayes PM, Garg S, Esen N (2005) Toll-like receptor 2 modulates the proinflammatory milieu in Staphylococcus aureus-induced brain abscess. Infect Immun 73:7428–7435. doi:10.1128/IAI.73.11.7428-7435.2005

    Article  PubMed  CAS  Google Scholar 

  31. Stranger-Jones YK, Bae T, Schneewind O (2006) Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci U S A 103:16942–16947. doi:10.1073/pnas.0606863103

    Article  PubMed  CAS  Google Scholar 

  32. Edman M, Berg S, Storm P, Wikstrom M, Vikstrom S, Ohman A, Wieslander A (2003) Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J Biol Chem 278:8420–8428. doi:10.1074/jbc.M211492200 M211492200 [pii]

    Article  PubMed  CAS  Google Scholar 

  33. Grebe T, Paik J, Hakenbeck R (1997) A novel resistance mechanism against beta-lactams in Streptococcus pneumoniae involves CpoA, a putative glycosyltransferase. J Bacteriol 179:3342–3349

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Monique Stins and Kwang Sik Kim for providing hBMEC and Satoshi Uchiyama for the SPN D39 glycosyltransferase ΔGTG mutant. The histopathologic analysis was performed at the University of California San Diego Histopathology Core Facility, Nissi Varki, director. This work was supported by grant no. R01 NS051247 from the National Institutes of Health to K.S.D. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly S. Doran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Role of YpfP in S. aureus HUVEC attachment and invasion. Adherence (a) and invasion (b) of human umbilical vein endothelial cells by S. aureus strain SA113 and isogenic mutant strain ΔypfP. Data are expressed as the total cell-associated (adherent) or intracellular (invasive) CFU recovered compared to that obtained with the WT (parental) strain. HUVEC monolayers were incubated with bacterial strains (MOI = 0.1) for 60 min followed by a 60-min gentamicin treatment to recover intracellular CFU (% invasion). The ΔypfP did not exhibit a decreased ability to adhere to HUVEC, but was significant less invasive. All assays were repeated in triplicate at least three times; data from a representative experiment are shown, *p < 0.05 (GIF 19 kb)

High-Resolution (TIFF 730 kb)

Supplemental Figure 2

Contribution of membrane-anchored LTA to S. aureus murine kidney invasion. Male CD-1 mice were injected i.v. with 3 × 107 cfu S. aureus SA113 or ΔypfP (a), or equal amounts of both strains (1 × 107 cfu final inoculum; b). Tissue was harvested 96 h p.i. and cfu enumerated on LB agar plates. Duplicate samples were plated on LB agar supplemented with erythromycin (15 µg mL−1) to differentiate WT and ΔypfP CFU in (b). There was no significant difference in bacterial load in the kidney between the two strains (95% confidence interval). For the competition experiment shown in (b), an overall ratio of 1 indicates equal numbers of WT and ΔypfP CFU were recovered from the tissue. (GIFF 18 kb)

High-Resolution (TIFF 697 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheen, T.R., Ebrahimi, C.M., Hiemstra, I.H. et al. Penetration of the blood–brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid. J Mol Med 88, 633–639 (2010). https://doi.org/10.1007/s00109-010-0630-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0630-5

Keywords

Navigation