Skip to main content
Log in

HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression

  • Original article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Many solid tumors consist of large regions of poorly perfused cells, resulting in areas of low oxygen (hypoxia) throughout the cell mass. Cells subjected to hypoxia turn on a complex set of responses that alter their metabolism, rebalance their survival mechanisms, increase their invasive capacity, and stimulate angiogenesis. This allows them to at least temporarily escape the nutrient starvation and cell death resulting from this hostile environment. Accordingly, the hypoxic regions of tumors are often sources of the most aggressive and therapy-resistant cells, and therefore those cells that drive tumorigenesis. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are enzymes that are functionally inactivated in hypoxia, as they use both oxygen and α-ketoglutarate as substrates to hydroxylate target prolyl residues. Although HIF1α, the most highly characterized PHD target, orchestrates many of the cellular responses to hypoxia observed in tumors, PHDs themselves have previously been shown to regulate some hypoxia responses, including apoptosis, in a HIF-independent mechanism. We have previously shown that PHDs can be reactivated under hypoxia and that this results in a metabolic defect, both in vitro and in vivo. This led us to investigate whether chronic reactivation of these enzymes may inhibit tumor progression. We show here that esterified α-ketoglutarate given daily will induce apoptosis and inhibit tumor growth, in vivo. The effects are independent of HIF1α but dependent on the presence of PHD3. These data suggest that PHD3 may be a valid target in vivo for anti-tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9:285–296

    Article  CAS  PubMed  Google Scholar 

  2. Fraisl P, Aragones J, Carmeliet P (2009) Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8:139–152

    Article  CAS  PubMed  Google Scholar 

  3. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  CAS  PubMed  Google Scholar 

  4. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975

    Article  CAS  PubMed  Google Scholar 

  5. Rademakers SE, Span PN, Kaanders JH, Sweep FC, van der Kogel AJ, Bussink J (2008) Molecular aspects of tumour hypoxia. Mol Oncol 2:41–53

    Article  PubMed  Google Scholar 

  6. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778

    Article  CAS  PubMed  Google Scholar 

  7. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    Article  CAS  PubMed  Google Scholar 

  8. Brahimi-Horn MC, Pouyssegur J (2007) Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol 73:450–457

    Article  CAS  PubMed  Google Scholar 

  9. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  CAS  PubMed  Google Scholar 

  10. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354

    Article  CAS  PubMed  Google Scholar 

  11. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  CAS  PubMed  Google Scholar 

  12. Taylor MS (2001) Characterization and comparative analysis of the EGLN gene family. Gene 275:125–132

    Article  CAS  PubMed  Google Scholar 

  13. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. Embo J 22:4082–4090

    Article  CAS  PubMed  Google Scholar 

  14. Tennant DA, Frezza C, Mackenzie ED, Nguyen QD, Zheng L, Selak MA, Roberts DL, Dive C, Watson DG, Aboagye EO, Gottlieb E (2009) Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 28:4009–4021

    Article  CAS  PubMed  Google Scholar 

  15. Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278:30772–30780

    Article  PubMed  Google Scholar 

  16. Xie L, Xiao K, Whalen EJ, Forrester MT, Freeman RS, Fong G, Gygi SP, Lefkowitz RJ, Stamler JS (2009) Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL. Sci Signal 2:ra33

    Article  PubMed  Google Scholar 

  17. Metzen E, Ratcliffe PJ (2004) HIF hydroxylation and cellular oxygen sensing. Biol Chem 385:223–230

    Article  CAS  PubMed  Google Scholar 

  18. Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A 98:9630–9635

    Article  CAS  PubMed  Google Scholar 

  19. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85

    Article  CAS  PubMed  Google Scholar 

  20. Milkiewicz M, Pugh CW, Egginton S (2004) Inhibition of endogenous HIF inactivation induces angiogenesis in ischaemic skeletal muscles of mice. J Physiol 560:21–26

    Article  CAS  PubMed  Google Scholar 

  21. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, Simon MC (2007) Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 27:912–925

    Article  CAS  PubMed  Google Scholar 

  22. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ (2003) Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 63:1764–1768

    CAS  PubMed  Google Scholar 

  23. Callapina M, Zhou J, Schnitzer S, Metzen E, Lohr C, Deitmer JW, Brune B (2005) Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1alpha accumulation—implications for prolyl hydroxylase activity and iron. Exp Cell Res 306:274–284

    Article  CAS  PubMed  Google Scholar 

  24. Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ (2009) Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15:527–538

    Article  CAS  PubMed  Google Scholar 

  25. Hatzimichael E, Dasoula A, Shah R, Syed N, Papoudou-Bai A, Coley HM, Dranitsaris G, Bourantas KL, Stebbing J, Crook T (2009) The prolyl-hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia. Eur J Haematol 84:47–51

    Article  PubMed  Google Scholar 

  26. Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C, Galateau-Salle F, Feunteun J, Pouyssegur J, Richard S, Gardie B (2008) PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 359:2685–2692

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Q, Gu J, Li L, Liu J, Luo B, Cheung HW, Boehm JS, Ni M, Geisen C, Root DE, Polyak K, Brown M, Richardson AL, Hahn WC, Kaelin WG Jr, Bommi-Reddy A (2009) Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase. Cancer Cell 16:413–424

    Article  CAS  PubMed  Google Scholar 

  28. Seth P, Krop I, Porter D, Polyak K (2002) Novel estrogen and tamoxifen induced genes identified by SAGE (Serial Analysis of Gene Expression). Oncogene 21:836–843

    Article  CAS  PubMed  Google Scholar 

  29. Aragones J, Schneider M, Van Geyte K, Fraisl P, Dresselaers T, Mazzone M, Dirkx R, Zacchigna S, Lemieux H, Jeoung NH, Lambrechts D, Bishop T, Lafuste P, Diez-Juan A, Harten SK, Van Noten P, De Bock K, Willam C, Tjwa M, Grosfeld A, Navet R, Moons L, Vandendriessche T, Deroose C, Wijeyekoon B, Nuyts J, Jordan B, Silasi-Mansat R, Lupu F, Dewerchin M, Pugh C, Salmon P, Mortelmans L, Gallez B, Gorus F, Buyse J, Sluse F, Harris RA, Gnaiger E, Hespel P, Van Hecke P, Schuit F, Van Veldhoven P, Ratcliffe P, Baes M, Maxwell P, Carmeliet P (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40:170–180

    Article  CAS  PubMed  Google Scholar 

  30. Schneider M, van Geyte K, Fraisl P, Kiss J, Aragones J, Mazzone M, Mairbaurl H, Debock K, Ho Jeoung N, Mollenhauer M, Georgiadou M, Bishop T, Roncal C, Sutherland A, Jordan B, Gallez B, Weitz J, Harris RA, Maxwell P, Baes M, Ratcliffe P, Carmeliet P (2009) Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/referpusion injury. Gastroenterology 138:1143–1154

    Article  PubMed  Google Scholar 

  31. Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, Ruiz de Almodovar C, De Smet F, Vinckier S, Aragones J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:839–851

    Article  CAS  PubMed  Google Scholar 

  32. Bishop T, Gallagher D, Pascual A, Lygate CA, de Bono JP, Nicholls LG, Ortega-Saenz P, Oster H, Wijeyekoon B, Sutherland AI, Grosfeld A, Aragones J, Schneider M, van Geyte K, Teixeira D, Diez-Juan A, Lopez-Barneo J, Channon KM, Maxwell PH, Pugh CW, Davies AM, Carmeliet P, Ratcliffe PJ (2008) Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. Mol Cell Biol 28:3386–3400

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, Farese RV, Freeman RS, Carter BD, Kaelin WG Jr, Schlisio S (2005) Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8:155–167

    Article  PubMed  Google Scholar 

  34. Schlisio S, Kenchappa RS, Vredeveld LC, George RE, Stewart R, Greulich H, Shahriari K, Nguyen NV, Pigny P, Dahia PL, Pomeroy SL, Maris JM, Look AT, Meyerson M, Peeper DS, Carter BD, Kaelin WG Jr (2008) The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev 22:884–893

    Article  CAS  PubMed  Google Scholar 

  35. Yan M, Rayoo M, Takano EA, Thorne H, Fox SB (2009) BRCA1 tumours correlate with a HIF-1alpha phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression. Br J Cancer 101:1168–1174

    Article  CAS  PubMed  Google Scholar 

  36. Hu CJ, Sataur A, Wang L, Chen H, Simon MC (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 18:4528–4542

    Article  CAS  PubMed  Google Scholar 

  37. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A 94:8104–8109

    Article  CAS  PubMed  Google Scholar 

  38. Poon E, Harris AL, Ashcroft M (2009) Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 11:e26

    Article  PubMed  Google Scholar 

  39. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421

    CAS  PubMed  Google Scholar 

  40. Erez N, Milyavsky M, Eilam R, Shats I, Goldfinger N, Rotter V (2003) Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1alpha activation and inhibits tumor growth. Cancer Res 63:8777–8783

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Cancer Research UK. We would like to thank Tom Hamilton and Derek Miller for their invaluable assistance with the in vivo work, Colin Nixon and Mairi Macdonald for helping with the histology, Margaret O’Prey for help with the microscopy, and Celeste Simon for generously providing us with the HIF1α-expressing plasmid.

Statement of Conflict of Interest

The authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Gottlieb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Two examples of tumors treated with a single dose of ETaKG. Serial sections were stained with pimonidazole and cleaved caspase-3. Images captured at ×20 magnification, scale bar indicates 200 μm. “N” marks a necrotic zone, and “H”, the hypoxic ring surrounding this area. (PDF 990 kb)

Figure S2

Proliferation and tumor growth for individual shPHD clones, as shown. (PDF 297 kb)

Figure S3

Immunoblots of xenograft tumor lysates showing PHD levels for each knockdown, after vehicle or ETaKG treatment. (PDF 102 kb)

Figure S4

Immunoblot of HIF1α after knockdown of PHD1, 2, or 3. (PDF 23 kb)

Figure S5

Negative control for anti-myc tag staining using a xenograft tumor not expressing any myc-tagged protein. Scale bar indicates 200 μm. (PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tennant, D.A., Gottlieb, E. HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression. J Mol Med 88, 839–849 (2010). https://doi.org/10.1007/s00109-010-0627-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0627-0

Keywords

Navigation