Skip to main content
Log in

Elevated circulating levels of matrix metalloproteinases MMP-2 and MMP-9 in pseudoxanthoma elasticum patients

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Pseudoxanthoma elasticum (PXE) is a rare disorder predominantly affecting the skin, the eyes, and the cardiovascular system. The disease is caused by mutations in the ABCC6 gene and characterized by ectopic calcification and extracellular matrix (ECM) alterations. Matrix metalloproteinases (MMPs) play a pivotal role in the process of ECM remodeling. In the present study, we investigated matrix metalloproteinases MMP-2 and MMP-9 in PXE patients compared to healthy controls. We analyzed the serum concentrations of MMP-2 and MMP-9 in a cohort of 69 German PXE patients and in 69 healthy, age-, and sex-matched control subjects using commercially available ELISA assays. We found elevated concentrations of both MMPs in the sera of PXE patients. MMP-2 levels were significantly higher in patients than controls (231 ± 5.89 vs 202 ± 5.17 ng/ml, p = 0.0002), as were MMP-9 levels (841 ± 65.9 vs 350 ± 30.8 ng/ml, p < 0.0001). Our findings point to an involvement of matrix metalloproteinases in PXE pathology. ECM remodeling in PXE is reflected by elevated levels of circulating MMP-2 and MMP-9. Those MMPs might, therefore, be applicable as serum markers for the matrix-degradative process in PXE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neldner KH (1998) Pseudoxanthoma elasticum. Int J Dermatol 27:98–100

    Article  Google Scholar 

  2. Ladewig MS, Götting C, Szliska C, Issa PC, Helb HM, Bedenicki I, Scholl HPN, Holz FG (2006) Pseudoxanthoma elasticum. Ophthalmologe 103:537–553

    Article  CAS  PubMed  Google Scholar 

  3. Le Saux O, Urban Z, Tschuch C, Csiszar K, Bacchelli B, Quaglino D, Pasquali-Ronchetti I, Pope FM, Richards A, Terry S et al (2000) Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat Genet 25:223–227

    Article  PubMed  Google Scholar 

  4. Scheffer GL, Hu X, Pijnenborg AC, Wijnholds J, Bergen AA, Scheper RJ (2002) MRP6 (ABCC6) detection in normal human tissues and tumors. Lab Invest 82:515–518

    CAS  PubMed  Google Scholar 

  5. Aumailley M, Gayraud B (1998) Structure and biological activity of the extracellular matrix. J Mol Med 76:253–265

    Article  CAS  PubMed  Google Scholar 

  6. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they're not just for matrix anymore!. Curr Opin Cell Biol 13:534–540

    Article  CAS  PubMed  Google Scholar 

  7. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  CAS  PubMed  Google Scholar 

  8. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL et al (1994) Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 370:555–557

    Article  CAS  PubMed  Google Scholar 

  9. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90:251–262

    CAS  PubMed  Google Scholar 

  10. Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  11. Tayebjee MH, Nadar SK, MacFadyen RJ, Lip GY (2004) Tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9 levels in patients with hypertension Relationship to tissue Doppler indices of diastolic relaxation. Am J Hypertens 17:770–774

    CAS  PubMed  Google Scholar 

  12. Tayebjee MH, Tan KT, MacFadyen RJ, Lip GY (2005) Abnormal circulating levels of metalloprotease 9 and its tissue inhibitor 1 in angiographically proven peripheral arterial disease: relationship to disease severity. J Intern Med 257:110–116

    Article  CAS  PubMed  Google Scholar 

  13. Shah JS, Hughes DA, Tayebjee MH, MacFadyen RJ, Mehta AB, Elliott PM (2007) Extracellular matrix turnover and disease severity in Anderson–Fabry disease. J Inherit Metab Dis 30:88–95

    Article  CAS  PubMed  Google Scholar 

  14. Beranek M, Kolar P, Tschoplova S, Kankova K, Vasku A (2008) Genetic variations and plasma levels of gelatinase A (matrix metalloproteinase-2) and gelatinase B (matrix metalloproteinase-9) in proliferative diabetic retinopathy. Mol Vis 14:1114–1121

    CAS  PubMed  Google Scholar 

  15. Lambert V, Munaut C, Jost M, Noël A, Werb Z, Foidart JM, Rakic JM (2002) Matrix metalloproteinase-9 contributes to choroidal neovascularization. Am J Pathol 161:1247–1253

    CAS  PubMed  Google Scholar 

  16. Chau KY, Sivaprasad S, Patel N, Donaldson TA, Luthert PJ, Chong NV (2008) Plasma levels of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) in age-related macular degeneration. Eye 22:855–859

    Article  CAS  PubMed  Google Scholar 

  17. Laack E, Köhler A, Kugler C, Dierlamm T, Knuffmann C, Vohwinkel G, Niestroy A, Dahlmann N, Peters A, Berger A et al (2002) Pretreatment serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in non-small-cell lung cancer. Ann Oncol 13:1550–1557

    Article  CAS  PubMed  Google Scholar 

  18. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, Giavazzi R (2003) Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 63:5224–5229

    CAS  PubMed  Google Scholar 

  19. Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T, Okumura K (2001) Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J 141:211–217

    Article  CAS  PubMed  Google Scholar 

  20. Quaglino D, Sartor L, Garbisa S, Boraldi F, Croce A, Passi A, De Luca G, Tiozzo R, Pasquali-Ronchetti I (2005) Dermal fibroblasts from pseudoxanthoma elasticum patients have raised MMP-2 degradative potential. Biochim Biophys Acta 1741:42–47

    CAS  PubMed  Google Scholar 

  21. Lebwohl M, Neldner K, Pope FM, De Paepe A, Christiano AM, Boyd CD, Uitto J, McKusick VA (1994) Classification of pseudoxanthoma elasticum: report of a consensus conference. J Am Acad Dermatol 30:103–107

    Article  CAS  PubMed  Google Scholar 

  22. Schulz V, Hendig D, Henjakovic M, Szliska C, Kleesiek K, Götting C (2006) Mutational analysis of the ABCC6 gene and the proximal ABCC6 gene promoter in German patients with pseudoxanthoma elasticum (PXE). Hum Mutat 27:831

    Article  PubMed  Google Scholar 

  23. Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109:4055–4063

    Article  CAS  PubMed  Google Scholar 

  24. Vyavahare N, Jones PL, Tallapragada S, Levy RJ (2000) Inhibition of matrix metalloproteinase activity attenuates tenascin-C production and calcification of implanted purified elastin in rats. Am J Pathol 157:885–893

    CAS  PubMed  Google Scholar 

  25. Basalyga DM, Simionescu DT, Xiong W, Baxter BT, Starcher BC, Vyavahare NR (2004) Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation 110:3480–3487

    Article  CAS  PubMed  Google Scholar 

  26. Kameda K, Matsunaga T, Abe N, Hanada H, Ishizaka H, Ono H, Saitoh M, Fukui K, Fukuda I, Osanai T et al (2003) Correlation of oxidative stress with activity of matrix metalloproteinase in patients with coronary artery disease. Possible role for left ventricular remodelling. Eur Heart J 24:2180–2185

    Article  CAS  PubMed  Google Scholar 

  27. Siwik DA, Colucci WS (2004) Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev 9:43–51

    Article  CAS  PubMed  Google Scholar 

  28. Pasquali-Ronchetti I, Garcia-Fernandez MI, Boraldi F, Quaglino D, Gheduzzi D, De Vincenzi Paolinelli C, Tiozzo R, Bergamini S, Ceccarelli D, Muscatello U (2006) Oxidative stress in fibroblasts from patients with pseudoxanthoma elasticum: possible role in the pathogenesis of clinical manifestations. J Pathol 208:54–61

    Article  CAS  PubMed  Google Scholar 

  29. Garcia-Fernandez MI, Gheduzzi D, Boraldi F, Paolinelli CD, Sanchez P, Valdivielso P, Morilla MJ, Quaglino D, Guerra D, Casolari S et al (2008) Parameters of oxidative stress are present in the circulation of PXE patients. Biochim Biophys Acta 1782:474–481

    CAS  PubMed  Google Scholar 

  30. Zarbock R, Hendig D, Szliska C, Kleesiek K, Götting C (2007) Pseudoxanthoma elasticum: genetic variations in antioxidant genes are risk factors for early disease onset. Clin Chem 53:1734–1740

    Article  CAS  PubMed  Google Scholar 

  31. Grandas OH, Mountain DH, Kirkpatrick SS, Cassada DC, Stevens SL, Freeman MB, Goldman MH (2009) Regulation of vascular smooth muscle cell expression and function of matrix metalloproteinases is mediated by estrogen and progesterone exposure. J Vasc Surg 49:185–191

    Article  PubMed  Google Scholar 

  32. Lai CF, Seshadri V, Huang K, Shao J, Cai J, Vattikuti R, Schumacher A, Loewy AP, Denhardt DT, Rittling SR et al (2006) An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ Res 98:1479–1489

    Article  CAS  PubMed  Google Scholar 

  33. Baccarani Contri M, Boraldi F, Taparelli F, De Paepe A, Pasquali Ronchetti I (1996) Matrix proteins with high affinity for calcium are associated with mineralization within elastic fibers of pseudoxanthoma elasticum dermis. Am J Pathol 148:569–577

    Google Scholar 

  34. Gheduzzi D, Sammarco R, Quaglino D, Bercovitch L, Terry S, Taylor W, Pasquali-Ronchetti I (2003) Extracutaneous ultrastructural alterations in pseudoxanthoma elasticum. Ultrastruct Pathol 27:375–384

    Article  PubMed  Google Scholar 

  35. Nadra I, Mason JC, Philippidis P, Florey O, Smythe CD, McCarthy GM, Landis RC, Haskard DO (2005) Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res 96:1248–1256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Christoph Lichtenberg and Marlen Ewald for their excellent technical assistance and Sarah L. Kirkby for her linguistic advice. We are very grateful to all the PXE patients and their relatives, whose cooperation made this study possible. Furthermore, we thank Peter Hof, chairman of the Selbsthilfegruppe für PXE-Erkrankte Deutschlands 1999 e.V., and the members of the Clinical Outpatients Department for PXE at the Bethesda Hospital in Freudenberg, Germany.

Conflict of interest statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Götting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diekmann, U., Zarbock, R., Hendig, D. et al. Elevated circulating levels of matrix metalloproteinases MMP-2 and MMP-9 in pseudoxanthoma elasticum patients. J Mol Med 87, 965–970 (2009). https://doi.org/10.1007/s00109-009-0497-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0497-5

Keywords

Navigation