Skip to main content
Log in

Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Lipocalin-2 (LCN2) is a novel adipokine with potential roles in obesity, insulin resistance, and inflammation. The aim of the present work was to evaluate the effect of obesity on circulating concentrations and gene and protein expression levels of LCN2 in human visceral adipose tissue (VAT) as well as its involvement in inflammation. VAT biopsies from 47 subjects were used in the study. Real-time PCR and Western-blot analyses were performed to quantify levels of LCN2 in VAT as well as the association with other genes implicated in inflammatory pathways. Forty-four serum samples were used to analyze the circulating concentrations of LCN2. Zymography analysis was used to determine the activity of matrix metalloproteinase (MMP) in VAT. Obese patients exhibited increased mRNA (p < 0.0001) and protein (p = 0.017) expression levels of LCN2 compared to lean subjects. Although no differences in plasma LCN2 concentrations were observed, increased circulating LCN2/MMP-9 complex levels were found (p = 0.038) in the obese group. Moreover, obese individuals showed increased (p < 0.01) activity of MMP-2 and MMP-9/LCN2 complex, while a positive correlation (p < 0.01) between MMP-2 and MMP-9 activities and BMI was observed. Gene and protein expression levels of LCN2 in VAT were positively associated with inflammatory markers (p < 0.01). These findings represent the first observation that mRNA and protein levels of LCN2 are increased in human VAT of obese subjects. Furthermore, LCN2 is associated with MMP-2 and MMP-9 activities as well as with pro-inflammatory markers suggesting its potential involvement in the low-grade chronic inflammation accompanying obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Badman MK, Flier JS (2007) The adipocyte as an active participant in energy balance and metabolism. Gastroenterology 132:2103–2115

    Article  PubMed  CAS  Google Scholar 

  2. Frühbeck G, Gómez-Ambrosi J (2001) Rationale for the existence of additional adipostatic hormones. FASEB J 15:1996–2006

    Article  PubMed  Google Scholar 

  3. Frühbeck G, Gómez-Ambrosi J (2003) Control of body weight: a physiologic and transgenic perspective. Diabetologia 46:143–172

    PubMed  Google Scholar 

  4. Trayhurn P (2007) Adipocyte biology. Obes Rev 8(Suppl 1):41–44

    Article  PubMed  CAS  Google Scholar 

  5. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  PubMed  CAS  Google Scholar 

  6. Sethi JK, Vidal-Puig AJ (2007) Targeting fat to prevent diabetes. Cell Metab 5:323–325

    Article  PubMed  CAS  Google Scholar 

  7. Frühbeck G (2008) Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol Biol 456:1–22

    Article  PubMed  Google Scholar 

  8. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921

    Article  PubMed  CAS  Google Scholar 

  9. Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305

    Article  PubMed  CAS  Google Scholar 

  10. Triebel S, Blaser J, Reinke H, Tschesche H (1992) A 25 kDa α 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett 314:386–388

    Article  PubMed  CAS  Google Scholar 

  11. Liu Q, Nilsen-Hamilton M (1995) Identification of a new acute phase protein. J Biol Chem 270:22565–22570

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, Tso AW, Chow WS, Wat NM, Xu JY, Hoo RL et al (2007) Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 53:34–41

    Article  PubMed  CAS  Google Scholar 

  13. Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, Houstis NE, Kahn BB, Rosen ED (2007) The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56:2533–2540

    Article  PubMed  CAS  Google Scholar 

  14. Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X (2008) The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol 22:1416–1426

    Article  PubMed  CAS  Google Scholar 

  15. Tan BK, Adya R, Shan X, Syed F, Lewandowski KC, O'Hare JP, Randeva HS (2009) Ex vivo and in vivo regulation of lipocalin-2, a novel adipokine, by insulin. Diabetes Care 32:129–131

    Article  PubMed  CAS  Google Scholar 

  16. Devireddy LR, Teodoro JG, Richard FA, Green MR (2001) Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293:829–834

    Article  PubMed  CAS  Google Scholar 

  17. Lin Y, Rajala MW, Berger JP, Moller DE, Barzilai N, Scherer PE (2001) Hyperglycemia-induced production of acute phase reactants in adipose tissue. J Biol Chem 276:42077–42083

    Article  PubMed  CAS  Google Scholar 

  18. Aigner F, Maier HT, Schwelberger HG, Wallnofer EA, Amberger A, Obrist P, Berger T, Mak TW, Maglione M, Margreiter R et al (2007) Lipocalin-2 regulates the inflammatory response during ischemia and reperfusion of the transplanted heart. Am J Transplant 7:779–788

    Article  PubMed  CAS  Google Scholar 

  19. Sommer G, Weise S, Kralisch S, Lossner U, Bluher M, Stumvoll M, Fasshauer M (2009) Lipocalin-2 is induced by interleukin-1β in murine adipocytes in vitro. J Cell Biochem 106:103–108

    Article  PubMed  CAS  Google Scholar 

  20. Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132:2169–2180

    Article  PubMed  CAS  Google Scholar 

  21. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83:461S–465S

    PubMed  CAS  Google Scholar 

  22. Stamenkovic I (2003) Extracellular matrix remodeling: the role of matrix metalloproteinases. J Pathol 200:448–464

    Article  PubMed  CAS  Google Scholar 

  23. Bouloumié A, Sengenès C, Portolan G, Galitzky J, Lafontan M (2001) Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 50:2080–2086

    Article  PubMed  Google Scholar 

  24. Yan L, Borregaard N, Kjeldsen L, Moses MA (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 276:37258–37265

    Article  PubMed  CAS  Google Scholar 

  25. Ginde SR, Geliebter A, Rubiano F, Silva AM, Wang J, Heshka S, Heymsfield SB (2005) Air displacement plethysmography: validation in overweight and obese subjects. Obes Res 13:1232–1237

    Article  PubMed  Google Scholar 

  26. Catalán V, Gómez-Ambrosi J, Ramírez B, Rotellar F, Pastor C, Silva C, Rodríguez A, Gil MJ, Cienfuegos JA, Frühbeck G (2007) Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg 17:1464–1474

    Article  PubMed  Google Scholar 

  27. Gómez-Ambrosi J, Catalán V, Diez-Caballero A, Martínez-Cruz LA, Gil MJ, García-Foncillas J, Cienfuegos JA, Salvador J, Mato JM, Frühbeck G (2004) Gene expression profile of omental adipose tissue in human obesity. FASEB J 18:215–217

    PubMed  Google Scholar 

  28. Catalán V, Gómez-Ambrosi J, Rotellar F, Silva C, Rodríguez A, Salvador J, Gil MJ, Cienfuegos JA, Frühbeck G (2007) Validation of endogenous control genes in human adipose tissue: relevance to obesity and obesity-associated type 2 diabetes mellitus. Horm Metab Res 39:495–500

    Article  PubMed  CAS  Google Scholar 

  29. Catalán V, Gómez-Ambrosi J, Rodríguez A, Silva C, Rotellar F, Gil MJ, Cienfuegos JA, Salvador J, Frühbeck G (2008) Expression of caveolin-1 in human adipose tissue is upregulated in obesity and obesity-associated type 2 diabetes mellitus and related to inflammation. Clin Endocrinol 68:213–219

    Google Scholar 

  30. Rodríguez A, Frühbeck G, Gómez-Ambrosi J, Catalán V, Sáinz N, Diez J, Zalba G, Fortuño A (2006) The inhibitory effect of leptin on angiotensin II-induced vasoconstriction is blunted in spontaneously hypertensive rats. J Hypertens 24:1589–1597

    Article  PubMed  CAS  Google Scholar 

  31. Sier CF, Kubben FJ, Ganesh S, Heerding MM, Griffioen G, Hanemaaijer R, van Krieken JH, Lamers CB, Verspaget HW (1996) Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br J Cancer 74:413–417

    PubMed  CAS  Google Scholar 

  32. Frühbeck G, Gómez-Ambrosi J, Muruzábal FJ, Burrell MA (2001) The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 280:E827–E847

    PubMed  Google Scholar 

  33. Fain JN, Buehrer B, Bahouth SW, Tichansky DS, Madan AK (2008) Comparison of messenger RNA distribution for 60 proteins in fat cells vs the nonfat cells of human omental adipose tissue. Metabolism 57:1005–1015

    Article  PubMed  CAS  Google Scholar 

  34. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362

    Article  PubMed  CAS  Google Scholar 

  35. Gómez-Ambrosi J, Rodríguez A, Catalán V, Ramírez B, Silva C, Rotellar F, Gil MJ, Salvador J, Frühbeck G (2008) Serum retinol-binding protein 4 is not increased in obesity or obesity-associated type 2 diabetes mellitus, but is reduced after relevant reductions in body fat following gastric bypass. Clin Endocrinol 69:208–215

    Article  CAS  Google Scholar 

  36. Wajchenberg BL, Giannella-Neto D, da Silva ME, Santos RF (2002) Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm Metab Res 34:616–621

    Article  PubMed  CAS  Google Scholar 

  37. Després JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887

    Article  PubMed  CAS  Google Scholar 

  38. Montague CT, Prins JB, Sanders L, Zhang J, Sewter CP, Digby J, Byrne CD, O'Rahilly S (1998) Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47:1384–1391

    Article  PubMed  CAS  Google Scholar 

  39. Rodríguez A, Catalán V, Gómez-Ambrosi J, Frühbeck G (2007) Visceral and subcutaneous adiposity: are both potential therapeutic targets for tackling the metabolic syndrome? Curr Pharm Des 13:2169–2175

    Article  PubMed  Google Scholar 

  40. Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N (2005) The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579:773–777

    Article  PubMed  CAS  Google Scholar 

  41. Christiaens V, Scroyen I, Lijnen HR (2008) Role of proteolysis in development of murine adipose tissue. Thromb Haemost 99:290–294

    PubMed  CAS  Google Scholar 

  42. Rangaswami H, Bulbule A, Kundu GC (2006) Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79–87

    Article  PubMed  CAS  Google Scholar 

  43. Lai CF, Seshadri V, Huang K, Shao JS, Cai J, Vattikuti R, Schumacher A, Loewy AP, Denhardt DT, Rittling SR et al (2006) An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ Res 98:1479–1489

    Article  PubMed  CAS  Google Scholar 

  44. Philip S, Bulbule A, Kundu GC (2001) Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-κ B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem 276:44926–44935

    Article  PubMed  CAS  Google Scholar 

  45. Gómez-Ambrosi J, Catalán V, Ramírez B, Rodríguez A, Colina I, Silva C, Rotellar F, Mugueta C, Gil MJ, Cienfuegos JA et al (2007) Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab 92:3719–3727

    Article  PubMed  CAS  Google Scholar 

  46. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  PubMed  CAS  Google Scholar 

  47. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S et al (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have nothing to disclose. This work was supported by FIS, PI061458, PI06/90288, and PI081146 from the Spanish Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, by the Department of Health (20/2005 and 3/2006) and by the Department of Education of the Gobierno de Navarra of Spain. The authors gratefully acknowledge the valuable collaboration of the Department of Surgery and all the members of the Multidisciplinary Obesity Team. We extend a special thanks to Dr. Patricia Fernández-Robredo for her valuable help in determining matrix metalloproteinase activity. CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) is an initiative of the Instituto de Salud Carlos III, Spain.

Disclosure statement

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Frühbeck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Supplemental Table 1 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalán, V., Gómez-Ambrosi, J., Rodríguez, A. et al. Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans. J Mol Med 87, 803–813 (2009). https://doi.org/10.1007/s00109-009-0486-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0486-8

Keywords

Navigation