Skip to main content
Log in

Multiple therapeutic effects of valproic acid in spinal muscular atrophy model mice

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Spinal muscular atrophy (SMA) is a progressive disease involving the degeneration of motor neurons with no currently available treatment. While valproic acid (VPA) is a potential treatment for SMA, its therapeutic mechanisms are still controversial. In this study, we investigated the mechanisms of action of VPA in the treatment of type III-like SMA mice. SMA and wild-type mice were treated with VPA from 6 to 12 months and 10 to 12 months of age, respectively. Untreated SMA littermates and age-matched wild-type mice were used for comparison. VPA-treated SMA mice showed better motor function, larger motor-evoked potentials, less degeneration of spinal motor neurons, less muscle atrophy, and better neuromuscular junction innervation than non-treated SMA mice. VPA elevated SMN protein levels in the spinal cord through SMN2 promoter activation and probable restoration of correct splicing of SMN2 pre-messenger RNA. VPA also increased levels of anti-apoptotic factors, Bcl-2 and Bcl-xL, in spinal neurons. VPA probably induced neurogenesis and promoted astrocyte proliferation in the spinal cord of type III-like SMA mice, which might contribute to therapeutic effects by enhancing neuroprotection. Through these effects of elevation of SMN protein level, anti-apoptosis, and probable neuroprotection, VPA-treated SMA mice had less degeneration of spinal motor neurons and better motor function than untreated type III-like SMA mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALS:

amyotrophic lateral sclerosis

ATPase:

adenosine triphosphatase

BrdU:

bromodeoxyuridine

ChAT:

choline acetyltransferase

CMAP:

compound muscle action potential

GFAP:

glial fibrillary acidic protein

HDAC:

histone deacetylase

NeuN:

neuronal nuclear

SMA:

spinal muscular atrophy

SMN:

survival motor neuron

VPA:

valproic acid

vWF:

von Willebrand factor

References

  1. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 13:155–165

    Article  Google Scholar 

  2. Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15:228–237

    Article  PubMed  CAS  Google Scholar 

  3. Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyupoglu IY, Wirth B (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489

    Article  PubMed  CAS  Google Scholar 

  4. Sumner CJ, Huynh TN, Markowitz JA, Perhac JS, Hill B, Coovert DD, Schussler K, Chen X, Jarecki J, Burghes AH, Taylor JP, Fischbeck KH (2003) Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 54:647–654

    Article  PubMed  CAS  Google Scholar 

  5. Tsai LK, Tsai MS, Lin TB, Hwu, WL, Li H (2006) Establishing a standardized therapeutic testing protocol for spinal muscular atrophy. Neurobiol Dis 24:286–295

    Article  PubMed  CAS  Google Scholar 

  6. Brichta L, Holker I, Haug K, Klockgether T, Wirth B (2006) In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate. Ann Neurol 59:970–975

    Article  PubMed  CAS  Google Scholar 

  7. Tsai LK, Yang CC, Hwu WL, Li H (2007) Valproic acid treatment in six patients with spinal muscular atrophy. Eur J Neurol 14:e8–9

    Article  PubMed  Google Scholar 

  8. Weihl CC, Connolly AM, Pestronk A (2006) Valproate may improve strength and function in patients with type III/IV spinal muscular atrophy. Neurology 67:500–501

    Article  PubMed  CAS  Google Scholar 

  9. National Institutes of Health, US (2006) Valproic acid and carnitine in patients with spinal muscular atrophy. http://www.clinicaltrials.gov/ct/gui/show/NCT00227266. Accessed 29 Jan 2007

  10. Bergeijk JV, Haastert K, Grothe C, Claus P (2006) Valproic acid promotes neurite outgrowth in PC12 cells independent from regulation of the survival of motoneuron protein. Chem Biol Drug Des 67:244–247

    Article  PubMed  Google Scholar 

  11. Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH (1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein Bcl-2 in the CNS. J Neurochem 72:879–882

    Article  PubMed  CAS  Google Scholar 

  12. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23:7311–7316

    PubMed  CAS  Google Scholar 

  13. Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24:6590–6599

    Article  PubMed  CAS  Google Scholar 

  14. Avila AM, Burnett BG, Taye AA, Gabanella F et al (2007) Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 117:659–671

    Article  PubMed  CAS  Google Scholar 

  15. Iezzi S, Padova MD, Serra C, Caretti G, Simone C, Maklan E, Minetti G, Zhao P, Hoffman EP, Puri PL, Sartorelli V (2004) Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin. Dev Cell 6:673–684

    Article  PubMed  CAS  Google Scholar 

  16. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70

    Article  PubMed  CAS  Google Scholar 

  17. Tsai LK, Tai MS, Ting CH, Wang SH, Li H (2008) Restoring Bcl-xL levels benefits a mouse model of spinal muscular atrophy. Neurobiol Dis. doi:10.1016/j.nbd.2008.05.014

  18. Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379

    PubMed  CAS  Google Scholar 

  19. Ting CH, Lin CW, Wen SL, Hsieh-Li HM, Li H (2007) Stat5 constitutive activation rescues defects in spinal muscular atrophy. Hum Mol Genet 16:499–514

    Article  PubMed  CAS  Google Scholar 

  20. Sumner CJ, Kolb SJ, Harmison GG, Jeffries NO, Schadt K, Finkel RS, Dreyfuss G, Fischbeck KH (2006) SMN mRNA and protein levels in peripheral blood, biomarkers for SMA clinical trials. Neurology 66:1067–1073

    Article  PubMed  CAS  Google Scholar 

  21. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, Li H (2004) Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110:1847–1854

    Article  PubMed  CAS  Google Scholar 

  22. Cifuentes-Diaz C, Nicole S, Velasco ME, Borra-Cebrian C, Panozzo C, Frugier T, Millet G, Roblot N, Joshi V, Melki J (2002) Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model. Hum Mol Genet 11:1439–1447

    Article  PubMed  CAS  Google Scholar 

  23. Gubitz AK, Feng W, Dreyfuss G (2004) The SMN complex. Exp Cell Res 296:51–56

    Article  PubMed  CAS  Google Scholar 

  24. Rajendra TK, Gonsalvez GB, Walker MP, Shpargel KB, Salz HK, Matera AG (2007) A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle. J Cell Biol 176:831–841

    Article  PubMed  CAS  Google Scholar 

  25. Cifuentes-Diaz C, Frugier T, Tiziano FD, Lacene E, Roblot N, Joshi V, Moreau MH, Melki J (2001) Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy. J Cell Biol 152:1107–1114

    Article  PubMed  CAS  Google Scholar 

  26. Dumon S, Santos SC, Debierre-Grockiego F, Gouilleux-Gruart V, Cocault L, Boucheron C, Mollat P, Gisselbrecht S, Gouilleux F (1999) IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene 18:4191–4199

    Article  PubMed  CAS  Google Scholar 

  27. Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AH, Prior TW (1998) Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet 63:1712–1723

    Article  PubMed  CAS  Google Scholar 

  28. Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368

    Article  PubMed  CAS  Google Scholar 

  29. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont, O, Munnich A, Dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269

    Article  PubMed  CAS  Google Scholar 

  30. Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AH (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6:1205–1214

    Article  PubMed  CAS  Google Scholar 

  31. Soler-Botija C, Ferrer I, Alvarez JL, Baiget M, Tizzano EF (2003) Downregulation of Bcl-2 proteins in type I spinal muscular atrophy motor neurons during fetal development. J Neuropathol Exp Neurol 62:420–426

    PubMed  CAS  Google Scholar 

  32. Araki S, Hayashi M, Tamagawa K, Saito M, Kato S, Komori T, Sakakihara Y, Mizutani T, Oda M (2003) Neuropathological analysis in spinal muscular atrophy type II. Acta Neurophathol 106:441–448

    Article  CAS  Google Scholar 

  33. Johansson CB, Momma S, Clarke DR, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  PubMed  CAS  Google Scholar 

  34. Martens DJ, Seaberg RM, van der Kooy D (2002) In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neuronal progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci 16:1045–1057

    Article  PubMed  Google Scholar 

  35. Mothe AJ, Tator CH (2005) Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 131:177–187

    Article  PubMed  CAS  Google Scholar 

  36. Zai LJ, Wrathall JR (2005) Cell proliferation and replacement following contusive spinal cord injury. Glia 50:247–257

    Article  PubMed  Google Scholar 

  37. De Hemptinne I, Boucherie C, Pochet R, Bantubungi K, Schiffmann SN, Maloteaux JM, Hermans E (2006) Unilateral induction of progenitors in the spinal cord of hSOD1G93A transgenic rats correlates with an asymmetrical hind limb paralysis. Neurosci Lett 401:25–29

    Article  PubMed  Google Scholar 

  38. Ohta Y, Nagai M, Nagata T, Murakami T, Nagano I, Narai H, Kurata T, Shiote M, Shoji M, Abe K (2006) Intrathecal injection of epidermal growth factor and fibroblast growth factor 2 promotes proliferation of neural precursor cells in the spinal cords of mice with mutant human SOD1 gene. J Neurosci Res 84:980–992

    Article  PubMed  CAS  Google Scholar 

  39. Ke Y, Chi L, Xu R, Luo C, Gozal D, Liu R (2006) Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem cell 24:1011–1019

    Article  Google Scholar 

  40. Talbot K, Davies KE (2001) Spinal muscular atrophy. Semin Neurol 21:189–196

    Article  PubMed  CAS  Google Scholar 

  41. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Eng J Med 344:1688–1700

    Article  CAS  Google Scholar 

  42. Brodie MJ, Dichter MA (1996) Antiepileptic drugs. New Engl J Med 334:168–175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Health Research Institute (grant NHRI-EX92-9029sp), National Taiwan University Hospital (grant NTUH-96M04), and Department of Medical Research of National Taiwan University Hospital. The authors thank Dr. Tzer-Bin Lin for electrophysiological equipment support.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Immunohistological analysis of the spinal anterior horn in untreated SMA (S–, ac, n = 4), VPA-treated SMA (S+, df, n = 4), untreated wild-type (W−, gi, n = 4) and VPA-treated wild-type mice (W+, n = 4). Spinal cord sections were stained for choline acetyltransferase (ChAT, red) and SMN (green) and for nuclei using DAPI (blue). ChAT-immunopositive cells are divided into three categories, including cells without SMN immunoreactivity (SMN(−), empty arrow), with partial SMN immunoreactivity (SMN(+/−), white arrow), and with full SMN immunoreactivity (SMN(+)). j VPA-treated SMN mice showed higher percentage of SMN(+) cells and lower percentage of SMN(−) cells than untreated SMA mice. k Higher gem (arrowhead) numbers in the nuclei could be detected in spinal neurons of VPA-treated SMA mice in comparison with untreated SMA mice. Scale bars 50 μm; *P < 0.05; **P ≤ 0.01 (GIF 550 kb)

High resolution image (TIF 759 kb)

Supplementary Fig. 2

Immunohistological analysis of the muscles in a negative control (not adding SMN antibody), b untreated SMA, c valproic acid (VPA)-treated SMA, and d untreated wild-type mice. Muscle sections were stained for SMN (green) and for nuclei using DAPI (blue). There was more SMN signal in muscles of VPA-treated than non-treated SMA mice. Scale bars 50 μm (GIF 1189 kb)

High resolution image (TIF 2639 kb)

Supplementary Fig. 3

Histological analysis of the spinal anterior horn in untreated SMA (S−, a, d, n = 4), VPA-treated SMA (S+, b, e, n = 4), untreated wild-type (W−, c, f, n = 4) and VPA-treated wild-type mice (W+, n = 4). Spinal cord sections were stained for Bcl-2 (ac, red) or Bcl-xL (df, red) with NeuN (green) and for nuclei using DAPI (blue). NeuN/Bcl-2 or NeuN/Bcl-xL double-labeled cells appeared to be yellow, while NeuN-immunopositive but Bcl-2 or Bcl-xL-immunonegative cells displayed green color. g VPA-treated SMA mice showed a higher percentage of NeuN-immunopositive cells displaying Bcl-2 immunopositive signal in the spinal cord as compared with untreated SMA mice. h VPA-treated SMA mice had a higher percentage of NeuN immunopositive cells displaying Bcl-xL-immunopositive signal in the spinal cord than untreated SMA mice. Scale bars 50 μm; *P < 0.05; **P ≤ 0.01 (GIF 547 kb)

High resolution image (TIF 880 kb)

Supplementary Fig. 4

Blots of the indicated figures for reactivity of antibodies used in our manuscript. For experimental design, see legends of the indicated figures and the “Materials and methods” section (GIF 374 kb)

High resolution image (TIF 522 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, LK., Tsai, MS., Ting, CH. et al. Multiple therapeutic effects of valproic acid in spinal muscular atrophy model mice. J Mol Med 86, 1243–1254 (2008). https://doi.org/10.1007/s00109-008-0388-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0388-1

Keywords

Navigation