Skip to main content

Advertisement

Log in

Activation of phosphoinositide 3-kinase by the NBS1 DNA repair protein through a novel activation motif

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Class IA phosphoinositide 3-kinases (PI 3-kinases) are key signaling components downstream of tyrosine kinases and Ras, regulating many different cellular functions and contributing to tumorigenesis. Class IA PI 3-kinases are heterodimers comprised of a p85 regulatory and a p110 catalytic subunit. Nijmegen breakage syndrome (NBS) is a chromosomal instability syndrome associated with cancer predisposition, radiosensitivity, microcephaly, and growth retardation. The NBS gene product p95 (also known as NBS1) is part of the Mre11-Rad50-Nbs1 complex, a central player associated with double-strand break repair. We previously demonstrated that NBS1 overexpression induces transformation through activation of PI 3-kinase/Akt. In this study, we show that NBS1 directly interacts, through a highly conserved C-terminal motif (aa 653–669) of NBS1, with the N-terminal domain (aa 1–108) of the p110α catalytic subunit of PI 3-kinase, and stimulates PI 3-kinase activity. Mutations of different regions of the conserved motif abolish the ability of NBS1 to activate PI 3-kinase in vitro and in vivo. Co-expression of NBS1/p110α/p-Akt is observed in certain percentage of head and neck cancer patient samples. These results demonstrate that NBS1 can function as an adaptor/activator of p110α PI 3-kinase through a novel activation motif, consistent with its possible role in cell transformation and tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

NBS:

Nijmegen breakage syndrome

PI 3-kinase:

phosphoinositide 3-kinase

References

  1. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  2. Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through class I PI3Ks in mammalian cells. Biochem Soc Trans 34:647–662

    Article  PubMed  CAS  Google Scholar 

  3. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase-Akt pathway in human cancer. Nature Rev Cancer 2:489–501

    Article  CAS  Google Scholar 

  4. Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D, McCormick F, Feng J, Tsichlis P (1998) Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17:313–325

    Article  PubMed  CAS  Google Scholar 

  5. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98:10983–10985

    Article  PubMed  CAS  Google Scholar 

  6. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4:257–262

    Article  PubMed  CAS  Google Scholar 

  7. Vanhaesebroeck B, Waterfield MD (1999) Signaling by distinct classes of phosphoinnositide 3-kinases. Exp Cell Res 253:239–254

    Article  PubMed  CAS  Google Scholar 

  8. Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L (2005) p84, a new Gβγ-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110γ. Curr Biol 15:566–570

    Article  PubMed  CAS  Google Scholar 

  9. Voigt P, Dorner MB, Schaefer M (2006) Characterization of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase gamma that is highly expressed in hear and interacts with PDE3B. J Biol Chem 281:9977–9986

    Article  PubMed  CAS  Google Scholar 

  10. Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J, Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT (1997) The Gβγ sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89:105–114

    Article  PubMed  CAS  Google Scholar 

  11. Dugweed M, Sperling K (2004) Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair 3:1207–1217

    Article  Google Scholar 

  12. Stracker TH, Theunissen JW, Morales M, Petrini JHJ (2004) The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair 3:845–854

    Article  PubMed  CAS  Google Scholar 

  13. D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signaling. Nature Rev Mol Cell Biol 3:317–327

    Article  CAS  Google Scholar 

  14. Wilda M, Demuth I, Concannon P, Sperling K, Hameister H (2000) Expression pattern of the Nijmegen breakage syndrome gene, Nbs1, during murine development. Hum Mol Genet 9:1739–1744

    Article  PubMed  CAS  Google Scholar 

  15. Costanzo V, Robertson K, Bibikova M, Kim E, Grieco D, Gottesman M, Carroll D, Gautier J (2001) Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell 8:137–147

    Article  PubMed  CAS  Google Scholar 

  16. Zhu J, Petersen S, Tessarollo L, Nussenzweig A (2001) Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11:105–109

    Article  PubMed  CAS  Google Scholar 

  17. Williams BR, Mirzoeva OK, Morgan WF, Lin J, Dunnick W, Petrini JHJ (2002) A murine model of Nijmegen breakage syndrome. Curr Biol 12:648–653

    Article  PubMed  CAS  Google Scholar 

  18. Kang J, Bronson RT, Xu Y (2002) Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 21:1447–1455

    Article  PubMed  CAS  Google Scholar 

  19. Chiang YC, Teng SC, Su YN, Hsieh FC, Wu KJ (2003) c-MYC directly regulates the transcription of NBS1 gene involved in DNA double-strand break repair. J Biol Chem 278:19286–19291

    Article  PubMed  CAS  Google Scholar 

  20. Chen YC, Su YN, Chou PC, Chiang WC, Chang MC, Wang LS, Teng SC, Wu KJ (2005) Overexpression of NBS1 contributes to transformation through the activation of phosphatidylinositol 3-kinase/Akt. J Biol Chem 280:32505–32511

    Article  PubMed  CAS  Google Scholar 

  21. Yang MH, Chiang, WC, Chou TY, Chang SY, Chen PM, Teng, SC, Wu KJ (2006) Increased NBS1 expression is a prognostic marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. Clin Cancer Res 12:507–515

    Article  PubMed  CAS  Google Scholar 

  22. Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, Teng SC, Wu KJ (2007) Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene 26:1459–1467

    Article  PubMed  CAS  Google Scholar 

  23. Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    Article  PubMed  CAS  Google Scholar 

  24. You Z, Chahwan C, Bailis J, Hunter T, Russell P (2005) ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25:5363–5379

    Article  PubMed  CAS  Google Scholar 

  25. Ueki K, Algenstaedt P, Mauvais-Jarvis F, Kahn CR (2000) Positive and negative regulation of Phosphoinositide 3-kinse-dependent signaling pathways by three different gene products of the p85α regulatory subunit. Mol Cell Biol 220:8035–8046

    Article  Google Scholar 

  26. Kang S, Denley A, Vanhaesebroeck B, Vogt PK (2006) Oncogenic transformation induced by the p110β, -γ, and -δ isoforms of class I phosphoinositide 3-kianse. Proc Natl Acad Sci USA 103:1289–1294

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J (1996) Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 15:2442–2451

    PubMed  CAS  Google Scholar 

  29. Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, Hong JJ, Blacksaw S, Ferris CD, Snyder SH (2000) PIKE. A nuclear GTPase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell 103:919–930

    Article  PubMed  CAS  Google Scholar 

  30. Desai-Mehta A, Cerosaletti KM, Concannon P (2001) Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol Cell Biol 21:2184–2191

    Article  PubMed  CAS  Google Scholar 

  31. Lee WT, Chang WH, Huang CH, Wu KJ (2007) NBS1, the Nijmegen breakage syndrome gene product, regulates neuronal proliferation and differentiation. J Neurochemistry 102:141–152

    Article  CAS  Google Scholar 

  32. Martelli AM, Fawnza I, Billi AM, Manzoli L, Evangelisti C, Fala F, Cocco L (2006) Intranuclear 3’-phosphoinositide metabolism and Akt signaling: new mechanisms for tumorigenesis and protection against apoptosis? Cell Signal 18:1101–1107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Y.C.Wu, J.H.Lin, A.M.Lin, and the Genomic Center of National Yang-Ming University for providing pGEX-4T−1, mouse p110α, pFlag-CMV2, and human p110γ cDNA clones, respectively. We are grateful to the excellent technical assistance of W.C. Chiang. We appreciate Drs. T.Y. Chou, W.Y. Li, and C.J. Liu (Taipei Mackay Memorial Hospital) for their reading of the IHC results and providing patient samples. This work was supported in part by National Research Program for Genomic Medicine (DOH-96-TD-G-111-002) (K.J.W.), Taipei Veterans General Hospital V96-ER2-010 (S.Y.C), VGH 96-C1-126, V-96-ER2-008 (M.H.Y.), National Science Council (NSC-95-2320-B-010-065) (K.J.W.), a grant from Ministry of Education, Aim for the Top University Plan (96A-D-D139)(K.J.W.), and National Health Research Institutes (NHRI-EX96-9611BI) (K.J.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kou-Juey Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Sequence of the oligonucleotides and restriction enzymes used for plasmid construction (DOC 190 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YC., Chiang, HY., Yang, MH. et al. Activation of phosphoinositide 3-kinase by the NBS1 DNA repair protein through a novel activation motif. J Mol Med 86, 401–412 (2008). https://doi.org/10.1007/s00109-008-0302-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0302-x

Keywords

Navigation