Skip to main content
Log in

Cholinergic status modulations in human volunteers under acute inflammation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cholinergic Status, the total soluble circulation capacity for acetylcholine hydrolysis, was tested for putative involvement in individual variabilities of the recruitment of immune cells in response to endotoxin challenge. Young (average age 26) and elderly (average age 70) volunteers injected with either Escherichia coli endotoxin or saline on two different occasions were first designated Enhancers and Suppressors if they showed increase or decrease, respectively, in plasma acetylcholinesterase (AChE) activity 1.5 h after endotoxin administration compared to saline. Enhancers showed significant co-increases in plasma butyrylcholinesterase (BChE) and paraoxonase (PON1) activities, accompanied by rapid recovery of lymphocyte counts. Young Enhancers alone showed pronounced post-exposure increases in the pro-inflammatory cytokine interleukin-6 (IL-6), and upregulation of the normally rare, stress-induced AChE-R variant, suggesting age-associated exhaustion of the cholinergic effects on recruiting innate immune reactions to endotoxin challenge. Importantly, IL-6 injected to young volunteers or administered in vitro to primary mononuclear blood cells caused upregulation of AChE, but not BChE or PON1, excluding it from being the sole cause for this extended response. Interestingly, Suppressors but not Enhancers showed improved post-exposure working memory performance, indicating that limited cholinergic reactions may be beneficial for cognition. Our findings establish Cholinergic Status modulations as early facilitators and predictors of individual variabilities in the peripheral response to infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  PubMed  CAS  Google Scholar 

  2. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  PubMed  CAS  Google Scholar 

  3. Loewenstein-Lichtenstein Y, Schwarz M, Glick D, Norgaard-Pedersen B, Zakut H, Soreq H (1995) Genetic predisposition to adverse consequences of anti-cholinesterases in ‘atypical’ BCHE carriers. Nat Med 1:1082–1085

    Article  PubMed  CAS  Google Scholar 

  4. Sklan EH, Lowenthal A, Korner M, Ritov Y, Landers DM, Rankinen T, Bouchard C, Leon AS, Rice T, Rao DC, Wilmore JH, Skinner JS, Soreq H (2004) Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci USA 101:5512–5517

    Article  PubMed  CAS  Google Scholar 

  5. Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39:687–699

    Article  PubMed  CAS  Google Scholar 

  6. Besedovsky HO, del Rey A (2000) The cytokine-HPA axis feed-back circuit. Z Rheumatol 59(Suppl 2):II/26–30

    CAS  Google Scholar 

  7. Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332:1351–1362

    Article  PubMed  CAS  Google Scholar 

  8. Tsigos C, Kyrou I, Chrousos GP, Papanicolaou DA (1998) Prolonged suppression of corticosteroid-binding globulin by recombinant human interleukin-6 in man. J Clin Endocrinol Metab 83:3379

    Article  PubMed  CAS  Google Scholar 

  9. Meshorer E, Toiber D, Zurel D, Sahly I, Dori A, Cagnano E, Schreiber L, Grisaru D, Tronche F, Soreq H (2004) Combinatorial complexity of 5′ alternative acetylcholinesterase transcripts and protein products. J Biol Chem 279:29740–29751

    Article  PubMed  CAS  Google Scholar 

  10. Reale M, Iarlori C, Gambi F, Feliciani C, Salone A, Toma L, DeLuca G, Salvatore M, Conti P, Gambi D (2004) Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines. J Neuroimmunol 148:162–171

    Article  PubMed  CAS  Google Scholar 

  11. Pick M, Perry C, Lapidot T, Guimaraes-Sternberg C, Naparstek, V. Deutsch, SoreqH (2006) Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis. Blood 107:3397–3406

    Article  PubMed  CAS  Google Scholar 

  12. Meshorer E, Soreq H (2006) Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci 29:216–224

    Article  PubMed  CAS  Google Scholar 

  13. Grisaru D, Pick M, Perry C, Sklan EH, Almog R, Goldberg I, Naparstek E, Lessing JB, Soreq H, Deutsch V (2006) Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses. J Immunol 176:27–35

    PubMed  CAS  Google Scholar 

  14. Evron T, Moyal-Segal LB, Lamm N, Geffen A, Soreq H (2005) RNA-targeted suppression of stress-induced allostasis in primate spinal cord neurons. Neurodegener Dis 2:16–27

    Article  PubMed  CAS  Google Scholar 

  15. Pollak Y, Gilboa A, Ben-Menachem O, Ben-Hur T, Soreq H, Yirmiya R (2005) Acetylcholinesterase inhibitors reduce brain and blood interleukin-1beta production. Ann Neurol 57:741–745

    Article  PubMed  CAS  Google Scholar 

  16. Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WS (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20:149–155

    PubMed  Google Scholar 

  17. Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3:453–462

    Article  PubMed  CAS  Google Scholar 

  18. Goshen I, Yirmiya R (2007) The role of proinflammatory cytokines in memory processes and neural plasticity. Elsevier, Amsterdam

    Google Scholar 

  19. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmacher T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452

    Article  PubMed  CAS  Google Scholar 

  20. Meyers CA (1999) Mood and cognitive disorders in cancer patients receiving cytokine therapy. Adv Exp Med Biol 461:75–81

    PubMed  CAS  Google Scholar 

  21. Cohen O, Reichenberg A, Perry C, Ginzberg D, Pollmacher T, Soreq H, Yirmiya R (2003) Endotoxin-induced changes in human working and declarative memory associate with cleavage of plasma “readthrough” acetylcholinesterase. J Mol Neurosci 21:199–212

    Article  PubMed  CAS  Google Scholar 

  22. Willard LB, Hauss-Wegrzyniak B, Wenk GL (1999) Pathological and biochemical consequences of acute and chronic neuroinflammation within the basal forebrain cholinergic system of rats. Neuroscience 88:193–200

    Article  PubMed  CAS  Google Scholar 

  23. Kaufer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–377

    Article  PubMed  CAS  Google Scholar 

  24. Pepeu G, Giovannini MG (2004) Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 11:21–27

    Article  PubMed  Google Scholar 

  25. Weinstock M (1995) The pharmacotherapy of Alzheimer’s disease based on the cholinergic hypothesis: an update. Neurodegeneration 4:349–356

    Article  PubMed  CAS  Google Scholar 

  26. Wechsler D (1997) Wechsler Adult Intelligence Scale. The Psychological Corporation, San Antonio

    Google Scholar 

  27. Furlong CE, Richter RJ, Seidel SL, Costa LG, Motulsky AG (1989) Spectrophotometric assays for the enzymatic hydrolysis of the active metabolites of chlorpyrifos and parathion by plasma paraoxonase/arylesterase. Anal Biochem 180:242–247

    Article  PubMed  CAS  Google Scholar 

  28. Ellman GL, Courtney KD, Andres Jr. V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  29. Sternfeld M, Shoham S, Klein O, Flores-Flores C, Evron T, Idelson GH, Kitsberg D, Patrick JW, Soreq H (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc Natl Acad Sci USA 97:8647–8652

    Article  PubMed  CAS  Google Scholar 

  30. Evron T, Geyer BC, Cherni I, Muralidharan M, Fletcher SP, Soreq H, Mor TS (2007) Plant-derived human acetylcholinesterase-R provides protection from lethal organophosphate poisoning and its chronic aftermath. FASEB J (in press).DOI 10.1096/fj.07-8112com

  31. Chatonnet A, Lockridge O (1989) Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 260:625–634

    PubMed  CAS  Google Scholar 

  32. Lauw FN, ten Hove T, Dekkers PE, de Jonge E, van Deventer SJ, van Der Poll T (2000) Reduced Th1, but not Th2, cytokine production by lymphocytes after in vivo exposure of healthy subjects to endotoxin. Infect Immun 68:1014–1018

    Article  PubMed  CAS  Google Scholar 

  33. Blanque R, Meakin C, Millet S, Gardner CR (1998) Selective enhancement of LPS-induced serum TNF-alpha production by carrageenan pretreatment in mice. Gen Pharmacol 31:301–306

    Article  PubMed  CAS  Google Scholar 

  34. Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN (1998) Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Invest 101:1581–1590

    Article  PubMed  CAS  Google Scholar 

  35. Akira S, Kishimoto T (1992) IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol Rev 127:25–50

    Article  PubMed  CAS  Google Scholar 

  36. Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, Nakajima T, Hirano T, Kishimoto T (1990) A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J 9:1897–1906

    PubMed  CAS  Google Scholar 

  37. Shapira M, Tur-Kaspa I, Bosgraaf L, Livni N, Grant AD, Grisaru D, Korner M, Ebstein RP, Soreq H (2000) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet 9:1273–1281

    Article  PubMed  CAS  Google Scholar 

  38. Saykin AJ, Wishart HA, Rabin LA, Flashman LA, McHugh TL, Mamourian AC, Santulli RB (2004) Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain 127:1574–1583

    Article  PubMed  Google Scholar 

  39. Chelly J, Khelfaoui M, Francis F, Cherif B, Bienvenu T (2006) Genetics and pathophysiology of mental retardation. Eur J Hum Genet 14:701–713

    Article  PubMed  CAS  Google Scholar 

  40. Reiche EM, Morimoto HK, Nunes SM (2005) Stress and depression-induced immune dysfunction: implications for the development and progression of cancer. Int Rev Psychiatry 17:515–527

    Article  PubMed  Google Scholar 

  41. Feingold KR, Memon RA, Moser AH, Grunfeld C (1998) Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 139:307–315

    Article  PubMed  CAS  Google Scholar 

  42. Van Lenten BJ, Wagner AC, Navab M, Fogelman AM (2001) Oxidized phospholipids induce changes in hepatic paraoxonase and ApoJ but not monocyte chemoattractant protein-1 via interleukin-6. J Biol Chem 276:1923–1929

    Article  PubMed  Google Scholar 

  43. Mike A, Castro NG, Albuquerque EX (2000) Choline and acetylcholine have similar kinetic properties of activation and desensitization on the alpha7 nicotinic receptors in rat hippocampal neurons. Brain Res 882:155–168

    Article  PubMed  CAS  Google Scholar 

  44. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9:125–134

    PubMed  CAS  Google Scholar 

  45. Krabbe KS, Reichenberg A, Yirmiya R, Smed A, Pedersen BK, Bruunsgaard H (2005) Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun 19:453–460

    Article  PubMed  CAS  Google Scholar 

  46. Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161–167

    Article  PubMed  CAS  Google Scholar 

  47. Capuron L, Ravaud A, Dantzer R (2001). Timing and specificity of the cognitive changes induced by interleukin-2 and interferon-alpha treatments in cancer patients. Psychosom Med 63:376–386

    PubMed  CAS  Google Scholar 

  48. Warburton EC, Koder T, Cho K, Massey PV, Duguid G, Barker GR, Aggleton JP, Bashir ZI, Brown MW (2003) Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38:987–996

    Article  PubMed  CAS  Google Scholar 

  49. Gilboa-Geffen A, Lacoste PP, Soreq L, Cizeron-Clairac G, Le Panse R, Truffault F, Shaked I, Soreq H, Berrih-Aknin S (2007) The thymic theme of acetylcholinesterase splice variants in myasthenia gravis. Blood 109:4383–4391

    Article  PubMed  CAS  Google Scholar 

  50. Darreh-Shori T, Hellstrom-Lindahl E, Flores-Flores C, Guan ZZ, Soreq H, Nordberg A (2004) Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer’s disease patients. J Neurochem 88:1102–1113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Tsafrir Mor of the University of Arizona for a highly purified recombinant human AChE-R.

This work was supported by the Deutsches Krebsforschungszentrum (DKFZ), the Israel Ministry of Science (MOS), BSF-US-Israel Binational Science Fund (2003028-01) and the Israeli Ministry of Commerce (NOPHAR) to H.S. The Centre of Inflammation and Metabolism (supported by a grant from the Danish National Research Foundation—DG 02-512-555); The Copenhagen Muscle Research Centre (supported by grants from The University of Copenhagen, The Faculties of Science and of Health Sciences at this university); The Copenhagen Hospital Corporation, The Danish National Research Foundation (Grant 504-14), the Commission of the European Communities (contract no. LSHM-CT-2004-005272 EXGENESIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermona Soreq.

Additional information

K. Ofek and K. Krabbe contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ofek, K., Krabbe, K.S., Evron, T. et al. Cholinergic status modulations in human volunteers under acute inflammation. J Mol Med 85, 1239–1251 (2007). https://doi.org/10.1007/s00109-007-0226-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0226-x

Keywords

Navigation