Skip to main content

Advertisement

Log in

Experimental models of spontaneous autoimmune disease in the central nervous system

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Animal models have become essential tools for studying the human autoimmune disease. They are of vital importance in explorations of disease aspects, where, for diverse reasons, human material is unavailable. This is especially true for disease processes preceding clinical diagnosis and for tissues, which are inaccessible to routine biopsy. Early developing multiple sclerosis (MS) makes an excellent point in case for these limitations. Useful disease models should be developing spontaneously, without a need of artificial, adjuvant-supported induction protocols, and they should reflect credibly at least some of the complex features of human disease. The aim of this review is to compile models that exhibit spontaneous organ-specific autoimmunity and explore their use for studying MS. We first evaluate a few naturally occurring models of organ-specific autoimmune diseases and then screen autoimmunity in animals with compromised immune regulation (neonatal thymectomy, transgenesis, etc.). While most of these models affect organs other than the nervous tissues, central nervous system (CNS)-specific autoimmune disease is readily noted either after transgenic overexpression of cytokines or chemokines within the CNS or by introducing CNS-specific immune receptors into the lymphocyte repertoire. Most recently, spontaneous autoimmunity resembling MS was obtained by transgenic expression of self-reactive T cell receptors and B cell receptors. These transgenic models are not only of promise for studying directly disease processes during the entire course of the disease but may also be helpful in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aire:

Autoimmune regulator

ALD:

Adrenoleukodystrophy

APECED:

Autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy

BBB:

Blood–brain barrier

CNS:

Central nervous system

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

EAE:

Experimental autoimmune encephalomyelitis

GALC:

Galactosylceramidase

GITR:

Glucocorticoid-induced tumor necrosis factor receptor family-related gene

GFAP:

Glial fibrillary acidic protein

HA:

Hemagglutinin

ICOS:

Inducible T-cell costimulator

ICAM-1:

Intercellular adhesion molecule-1

Ig:

immunoglobulin

IL-2:

Interleukin-2

IFN-γ :

Interferon-γ

LPS:

Lipopolysaccharide

MBP:

Myelin basic protein

MHC:

Major histocompatibility complex

MOG:

Myelin oligodendrocyte glycoprotein

MS:

Multiple Sclerosis

NOD:

Nonobese diabetic

OS:

Obese strain

OSE:

Opticospinal encephalomyelitis

PLP:

Proteolipid protein

PNS:

Peripheral nervous system

PD-1:

Program death 1

RAG:

Recombinase-activating gene

SPF:

Specific pathogen-free

TCR:

T cell receptor

T1D:

Type 1 Diabetes mellitus

TLR:

Toll-like receptor

TNF-α :

Tumor necrosis factor-α

Treg:

Regulatory T cells

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Hemachudha T, Griffin DE, Giffels JJ, Johnson RT, Moser AB, Phanuphak P (1987) Myelin basic protein as an encephalitogen in encephalomyelitis and polyneuritis following rabies vaccination. N Engl J Med 316:369–374

    Article  PubMed  CAS  Google Scholar 

  2. Bach J-F (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920

    PubMed  Google Scholar 

  3. Wekerle H, Lassmann H (2006) The immunology of inflammatory demyelinating disease. In: Compston A, Confavreux C, Lassmann H, McDonald I, Miller D, Noseworthy J, Smith K, Wekerle H (eds) McAlpine’s multiple sclerosis. Elsevier, London, UK, pp 491–546

    Google Scholar 

  4. Compston A, Wekerle H (2006) The genetics of multiple sclerosis. In: Compston A, Confavreux C, Lassmann H, McDonald I, Miller D, Noseworthy J, Smith K, Wekerle H (eds) McAlpine’s multiple sclerosis. Elsevier, London, UK, pp 113–181

    Google Scholar 

  5. Lam-Tse WK, Lernmark Å, Drexhage HA (2002) Animal models of endocrine/organ-specific autoimmune diseases: do they really help us to understand human autoimmunity? Springer Semin Immunopathol 24:297–321

    PubMed  CAS  Google Scholar 

  6. Greiner DL, Rossini AA, Mordes JP (2001) Translating data from animal models into methods for preventing human autoimmune diabetes mellitus: caveat emptor and primum non nocere. Cell Immunol 100:134–143

    CAS  Google Scholar 

  7. Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485

    PubMed  CAS  Google Scholar 

  8. Todd JA, Wicker LS (2001) Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 15:387–395

    PubMed  CAS  Google Scholar 

  9. Lesage S, Goodnow CC (2001) Organ specific autoimmune disease: a deficiency of tolerogenic stimulation? J Exp Med 194:F31–F36

    PubMed  CAS  Google Scholar 

  10. Kojima A, Tanaka-Kojima Y, Sakakura T, Nishizuka Y (1976) Spontaneous development of autoimmune thyroiditis in neonatally thymectomized mice. Lab Invest 34:550–558

    PubMed  CAS  Google Scholar 

  11. Sakaguchi S, Sakaguchi N (2000) Role of genetic factors in organ specific autoimmune diseases induced by manipulating the thymus or T cells, and not self-antigens. Rev Immunogenet 2:147–153

    PubMed  CAS  Google Scholar 

  12. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    PubMed  CAS  Google Scholar 

  13. Haneji N, Nakamura T, Takio K, Yanagi K, Higashiyama H, Saito I, Noji S, Sugino H, Hayashi Y (1997) Identification of a-fodrin as a candidate autoantigen in primary Sjögren’s syndrome. Science 276:604–607

    PubMed  CAS  Google Scholar 

  14. Alderuccio F, Toh B-H, Tan S-S, Gleeson PA, Van Driel IR (1993) An autoimmune disease with multiple molecular targets abrogated by the transgenic expression of a single autoantigen in the thymus. J Exp Med 178:419–426

    PubMed  CAS  Google Scholar 

  15. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–261

    PubMed  CAS  Google Scholar 

  16. Malek TR, Yu A, Vincek V, Scibelli P, Kong L (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2R-deficient mice: implications for the nonredundant function of IL-2. Immunity 17:167–178

    PubMed  CAS  Google Scholar 

  17. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko S-A, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    PubMed  CAS  Google Scholar 

  18. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    PubMed  CAS  Google Scholar 

  19. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    PubMed  CAS  Google Scholar 

  20. Khattri R, Cox T, Yasayko S-A, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    PubMed  CAS  Google Scholar 

  21. Aaltonen J, Björses P, Sandkuijl L, Perheentupa J, Peltonen L (1994) An autosomal locus causing autoimmune disease. Autoimmune polyglandular disease type I assigned to chromosome 21. Nat Genet 8:83–87

    PubMed  CAS  Google Scholar 

  22. Ramsey C, Winqvist O, Puhakka L, Halonen M, Moro A, Kampe O, Eskelin P, Pelto-Huikko M, Peltonen L (2002) AIRE deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet 11:397–409

    PubMed  CAS  Google Scholar 

  23. Derbinski J, Gäbler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202:33–45

    PubMed  CAS  Google Scholar 

  24. Su MA, Anderson MS (2004) Aire: an update. Curr Opin Immunol 16:746–752

    PubMed  CAS  Google Scholar 

  25. Mi Q-S, Deng Z-B, Joshi SK, Wang Z-Z, Zhou L, Eckenrode S, Joshi R, Ly D, Yi B, Delovitch TL et al (2006) The autoimmune regulator (Aire) controls iNKT cell development and maturation. Nat Med 12:624–626

    PubMed  CAS  Google Scholar 

  26. Chen ZB, Benoist C, Mathis D (2005) How defects in central tolerance impinge on a deficiency in regulatory T cells. Proc Natl Acad Sci USA 102:14735–14740

    PubMed  CAS  Google Scholar 

  27. Salomon B, Rhee L, Bour-Jordan H, Hsin H, Montag A, Soliven B, Arcella J, Girvin AM, Miller SD, Bluestone JA (2001) Development of spontaneous autoimmune peripheral polyneuropathy in B7-2 deficient NOD mice. J Exp Med 194:677–684

    PubMed  CAS  Google Scholar 

  28. Bour-Jordan H, Thompson HL, Bluestone JA (2005) Distinct effector mechanisms in the development of autoimmune neuropathy versus diabetes in nonobese diabetic mice. J Immunol 175:5649–5655

    PubMed  CAS  Google Scholar 

  29. Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural Foxp3 +CD25+CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201:723–735

    PubMed  CAS  Google Scholar 

  30. Oono T, Fukui Y, Masuko S, Hashimoto O, Ueno T, Sanui T, Inayoshi A, Noda M, Sata M, Sasazuki T (2001) Organ-specific autoimmunity in mice whose T cell repertoire is shaped by a single antigenic peptide. J Clin Invest 108:1589–1596

    PubMed  CAS  Google Scholar 

  31. Probert L, Akassoglou K, Pasparakis M, Kontogeorgos G, Kollias G (1995) Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor α. Proc Natl Acad Sci USA 92:11294–11298

    PubMed  CAS  Google Scholar 

  32. Kassiotis G, Bauer J, Akassoglou K, Lassmann H, Kollias G, Probert L (1999) A tumor necrosis factor-induced model of human primary demyelinating diseases develops in immunodeficient mice. Eur J Immunol 29:912–917

    PubMed  CAS  Google Scholar 

  33. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MBA, Mucke L (1993) Neurologic disease induced in transgenic mice by cerebral over-expression of interleukin 6. Proc Natl Acad Sci USA 90:10061–10065

    PubMed  CAS  Google Scholar 

  34. Brett FM, Mizisin AP, Powell HC, Campbell IL (1995) Evolution of neuropathologic abnormalities associated with blood-brain-barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol 54:766–775

    PubMed  CAS  Google Scholar 

  35. Chiang C-S, Powell HC, Gold LH, Samimi A, Campbell IL (1996) Macrophage/microglial-mediated primary demyelination and motor disease induced by the central nervous system production of interleukin-3 in transgenic mice. J Clin Invest 97:1512–1524

    PubMed  CAS  Google Scholar 

  36. Akwa Y, Hassett DE, Eloranta M-L, Sandberg K, Masliah E, Powell HC, Whitton JL, Bloom FE, Campbell IL (1998) Transgenic expression of IFN-α in the central nervous system of mice protects against lethal neurotrophic viral infection but induces inflammation and neurodegeneration. J Immunol 161:5016–5026

    PubMed  CAS  Google Scholar 

  37. Pagenstecher A, Lassmann S, Carson MJ, Kincaid CL, Stalder AK, Campbell IL (2000) Astrocyte-targeted expression of IL-12 induces active cellular immune responses in the central nervous system and modulates experimental allergic encephalomyelitis. J Immunol 164:4481–4492

    PubMed  CAS  Google Scholar 

  38. Horwitz MS, Evans CF, McGavern DB, Rodriguez M, Oldstone MBA (1997) Primary demyelination in transgenic mice expressing interferon-γ. Nat Med 3:1037–1041

    PubMed  CAS  Google Scholar 

  39. Harrington LE, Mangan PR, Weaver CT (2006) Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 18:349–356

    PubMed  CAS  Google Scholar 

  40. Fuentes ME, Durham SK, Swerdel MR, Lewin AC, Barton DS, Megill JR, Bravo R, Lira SA (1995) Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol 155:5769–5776

    PubMed  CAS  Google Scholar 

  41. Boztug K, Carson MJ, Pham-Mitchell N, Asensio VC, DeMartino J, Campbell IL (2002) Leukocyte infiltration, but not neurodegeneration, in the CNS of transgenic mice with astrocyte production of the CXC chemokine ligand 10. J Immunol 169:1505–1515

    PubMed  CAS  Google Scholar 

  42. Griffin DE, Moser HW, Mendoza Q, Moensch TR, O'Toole S, Moser AB (1985) Identification of the inflammatory cells in the central nervous system of patients with adrenoleukodystrophy. Ann Neurol 18:660–664

    PubMed  CAS  Google Scholar 

  43. McGuinness MC, Powers JM, Bias WB, Schmeckpeper BJ, Segal AH, Gowda VC, Wesselingh SL, Berger J, Griffin DE, Smith KD (1997) Human leukocyte antigens and cytokine expression in cerebral inflammatory demyelinating lesions of X-linked adrenoleukodystrophy and multiple sclerosis. J Neuroimmunol 75:174–182

    PubMed  CAS  Google Scholar 

  44. Kobayashi T, Shinnoh N, Kondo A, Yamada T (1997) Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun 232:631–636

    PubMed  CAS  Google Scholar 

  45. Lu J-F, Lawler AM, Watkins PA, Powers JM, Moser AB, Moser HW, Smith KD (1997) A mouse model for X-linked adrenoleukodystrophy. Proc Natl Acad Sci USA 94:9366–9371

    PubMed  CAS  Google Scholar 

  46. Suzuki K, Suzuki K (1995) The twitcher mouse: a model for Krabbe disease and for experimental therapies. Brain Pathol 5:249–258

    PubMed  CAS  Google Scholar 

  47. Ohno M, Komiyama A, Martin PM, Suzuki K (1993) MHC class II antigen expression and T-cell infiltration in the demyelinating CNS and PNS of the twitcher mouse. Brain Res 625:186–196

    PubMed  CAS  Google Scholar 

  48. Matsushima GK, Taniike M, Glimcher LH, Grusby MJ, Frelinger JA, Suzuki K, Ting JPY (1994) Absence of MHC class II molecules reduces CNS demyelination, microglia/macrophage infiltration, and twitching in murine globoid cell leukodystrophy. Cell 78:645–656

    PubMed  CAS  Google Scholar 

  49. Bradl M, Bauer J, Flügel A, Wekerle H (2005) Complementary contribution of CD4 and CD8 T lymphocytes to T cell infiltration of the intact and the degenerative spinal cord. Am J Pathol 166:1441–1450

    PubMed  Google Scholar 

  50. Ip CW, Kroner A, Bendszus M, Leder C, Kobsar I, Fischer S, Wiendl H, Nave K-A, Martini R (2006) Immune cells contribute to myelin degeneration and axonopathic changes in mice overexpressing proteolipid protein in oligodendrocytes. J Neurosci 26:8206–8216

    PubMed  CAS  Google Scholar 

  51. Neumann H, Wekerle H (1998) Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol 58:1–9

    Google Scholar 

  52. Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72:551–560

    PubMed  CAS  Google Scholar 

  53. Lafaille J, Nagashima K, Katsuki M, Tonegawa S (1994) High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor mice. Cell 78:399–408

    PubMed  CAS  Google Scholar 

  54. Olivares-Villagómez D, Wang Y, Lafaille JJ (1998) Regulatory CD4+ T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 188:1883–1894

    PubMed  Google Scholar 

  55. Van de Keere F, Tonegawa S (1998) CD4+ T cells prevent spontaneous experimental autoimmune encephalomyelitis in anti-myelin basic protein T cell receptor transgenic mice. J Exp Med 188:1875–1882

    PubMed  Google Scholar 

  56. Matejuk A, Buenafe AC, Dwyer J, Ito A, Silverman M, Zamora A, Subramanian S, Vandenbark AA, Offner H (2003) Endogenous CD4+ BV8S2-T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG −/− mice. J Neurosci Res 71:89–103

    PubMed  CAS  Google Scholar 

  57. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    PubMed  CAS  Google Scholar 

  58. Garcia KC, Radu CG, Ho J, Ober RJ, Ward ES (2001) Kinetics and thermodynamics of T cell receptor–autoantigen interactions in murine experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 98:6818–6823

    PubMed  CAS  Google Scholar 

  59. Wekerle H (2006) Breaking ignorance: the case of the brain. In: Radbruch A, Lipsky PE (eds) Current concepts in autoimmunity and chronic inflammation. Springer, Berlin, pp 25–50

    Google Scholar 

  60. Kamradt T, Göggel R, Erb KJ (2005) Induction, exacerbation and inhibition of allergic and autoimmune diseases by infection. Trends Immunol 26:260–267

    PubMed  CAS  Google Scholar 

  61. Waldner H, Collins M, Kuchroo VK (2004) Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J Clin Invest 113:990–997

    PubMed  CAS  Google Scholar 

  62. Nogai A, Siffrin V, Bonhagen K, Pfueller CF, Hohnstein T, Volkmer-Engert R, Brück W, Stadelmann C, Kamradt T (2005) Lipopolysaccharide injection induces relapses of experimental autoimmune encephalomyelitis in nontransgenic mice via bystander activation of autoreactive CD4+ cells. J Immunol 175:959–966

    PubMed  CAS  Google Scholar 

  63. Storch MK, Stefferl A, Brehm U, Weissert R, Wallström E, Kerschensteiner M, Olsson T, Linington C, Lassmann H (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8:681–694

    Article  PubMed  CAS  Google Scholar 

  64. Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081

    PubMed  CAS  Google Scholar 

  65. Wensky AK, Furtado GC, Garibaldi Marcondes MC, Chen SH, Manfra D, Lira SA, Zagzag D, Lafaille JJ (2005) IFN-γ determines distinct clinical outcomes in autoimmune encephalomyelitis. J Immunol 174:1416–1423

    PubMed  CAS  Google Scholar 

  66. Huseby ES, Öhlén C, Goverman J (1999) Myelin basic protein specific cytotoxic T cell tolerance is maintained in vivo by a single dominant epitope in H-2k mice. J Immunol 163:1115–1118

    PubMed  CAS  Google Scholar 

  67. Huseby ES, Liggitt D, Brabb T, Schnabel B, Öhlén C, Goverman J (2001) A pathogenic role for myelin specific CD8+ T cells in a model for multiple sclerosis. J Exp Med 194:669–676

    PubMed  CAS  Google Scholar 

  68. Perchellet A, Stromnes I, Pang JM, Goverman J (2004) CD8+ T cells maintain tolerance to myelin basic protein by ‘epitope theft’. Nat Immunol 5:606–614

    PubMed  CAS  Google Scholar 

  69. Cornet A, Savidge TC, Cabarrocas J, Deng WL, Colombel JF, Lassmann H, Desreumaux P, Liblau RS (2001) Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn’s disease? Proc Natl Acad Sci USA 98:13306–13311

    PubMed  CAS  Google Scholar 

  70. Cabarrocas J, Bauer J, Piaggio E, Liblau R, Lassmann H (2003) Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes. Eur J Immunol 33:1174–1182

    PubMed  CAS  Google Scholar 

  71. Madsen LS, Andersson EC, Jansson L, Krogsgaard M, Andersen CB, Engsberg J, Strominger JL, Svejgaard A, Holmdahl R, Wucherpfennig KW et al (1999) A humanized model for multiple sclerosis using HLA DR2 and a human T cell receptor. Nat Genet 23:343–347

    PubMed  CAS  Google Scholar 

  72. Ellmerich S, Takács K, Mycko M, Waldner H, Wahid F, Boyton RJ, Smith PA, Amor S, Baker D, Hafler DA et al (2004) Disease-related epitope spread in a humanized T cell receptor transgenic model of multiple sclerosis. Eur J Immunol 34:1839–1848

    PubMed  CAS  Google Scholar 

  73. Ellmerich S, Mycko M, Takács K, Waldner H, Wahid FN, Boyton RJ, King RHM, Smith PA, Amor S, Herlihy AH et al (2005) High incidence of spontaneous disease in an HLA-DR15 and TCR transgenic multiple sclerosis model. J Immunol 174:1938–1946

    PubMed  CAS  Google Scholar 

  74. Quandt JA, Baig M, Yao K, Kawamura K, Huh J, Ludwin SK, Bian H-J, Bryant M, Quigley L, Nagy ZA et al (2004) Unique clinical and pathological features in HLA-DRB1*0401-restricted MBP 111-129 specific humanized TCR transgenic mice. J Exp Med 200:223–234

    PubMed  CAS  Google Scholar 

  75. Browning JL (2006) B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nat Rev Drug Discov 5:564–576

    PubMed  CAS  Google Scholar 

  76. Lassmann H, Brück W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121

    PubMed  CAS  Google Scholar 

  77. Keegan M, König F, McClelland R, Brück W, Morales Y, Bitsch A, Panitch H, Lassmann H, Weinshenker B, Rodriguez M et al (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366:579–582

    PubMed  Google Scholar 

  78. Litzenburger T, Fässler R, Bauer J, Lassmann H, Linington C, Wekerle H, Iglesias A (1998) B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J Exp Med 188:169–180

    PubMed  CAS  Google Scholar 

  79. Bettelli E, Baeten D, Jäger A, Sobel RA, Kuchroo VK (2006) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116:2393–2402

    PubMed  CAS  Google Scholar 

  80. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392

    Article  PubMed  CAS  Google Scholar 

  81. Penhale WJ, Farmer A, McKenna RP, Irvine WJ (1973) Spontaneous thyroiditis in thymectomized and irradiated Wistar rats. Clin Exp Immunol 15:225–236

    PubMed  CAS  Google Scholar 

  82. Laurie KL, Van Driel IR, Gleeson PA (2002) The role of CD4+CD25+ immunoregulatory T cells in the induction of autoimmune gastritis. Immunol Cell Biol 80:567–573

    PubMed  Google Scholar 

  83. Shimizu J, Yamazaki S, Takahashi S, Ishida Y, Sakaguchi S (2002) Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142

    PubMed  CAS  Google Scholar 

  84. Chen Z, Herman AE, Matos M, Mathis D, Benoist C (2005) Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J Exp Med 202:1387–1397

    PubMed  CAS  Google Scholar 

  85. Kim JM, Rasmussen JP, Rudensky AY (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8(2):191–197

    PubMed  CAS  Google Scholar 

  86. Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann A, Wagner H, Huehn J, Sparwasser T (2007) Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204(1):57–63

    PubMed  CAS  Google Scholar 

  87. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    PubMed  CAS  Google Scholar 

  88. Papiernik M, De Moraes ML, Pontoux C, Vasseur F, Penit C (1998) Regulatory CD4 T cells: expression of IL-2R α chain, resistance to clonal deletion and IL-2 dependency. Int Immunol 10:371–378

    PubMed  CAS  Google Scholar 

  89. Li MO, Sanjabi S, Flavell RA (2006) Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25:455–471

    PubMed  CAS  Google Scholar 

  90. Akassoglou K, Probert L, Kontogeorgos G, Kollias G (1997) Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 158:348–445

    Google Scholar 

  91. Taupin V, Renno T, Bourbonnière L, Rodriguez M, Owens T (1997) Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-α in the central nervous system. Eur J Immunol 27:905–913

    PubMed  CAS  Google Scholar 

  92. Corbin JG, Kelly D, Rath EM, Baerwald KD, Suzuki K, Popko B (1996) Targeted CNS expression of interferon-γ in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol Cell Neurosci 7:354–370

    PubMed  CAS  Google Scholar 

  93. Wyss-Coray T, Feng L, Masliah E, Ruppe MD, Lee HS, Toggas SM, Rockenstein EM, Mucke L (1995) Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-β1. Am J Pathol 147:53–67

    PubMed  CAS  Google Scholar 

  94. Tani M, Fuentes ME, Peterson JW, Trapp BD, Durham SK, Loy JK, Bravo R, Ransohoff RM, Lira SA (1996) Neutrophil infiltration, glial reaction, and neurological disease in transgenic mice expressing the chemokine N51/KC in oligodendrocytes. J Clin Invest 98:529–539

    PubMed  CAS  Google Scholar 

  95. Chen S-C, Leach MW, Chen YY, Cai XY, Sullivan L, Wiekowski M, Dovey-Hartman BJ, Zlotnik A, Lira SA (2002) Central nervous system inflammation and neurological disease in transgenic mice expressing the CC chemokine CCL21 in oligodendrocytes. J Immunol 168:1009–1017

    PubMed  CAS  Google Scholar 

  96. Bennett JL, Elhofy A, Dal Canto MC, Tani M, Ransohoff RM, Karpus WJ (2003) CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45highCD11b+ monocytes and enhanced Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J Neurovirology 9:623–636

    CAS  Google Scholar 

  97. Imamoto K (1986) Appearance of hematogenous cells in the white matter of myelin-deficient Jimpy mice. Arch Histol Jpn 49:297–307

    PubMed  CAS  Google Scholar 

  98. Billings-Gagliardi S, Nunnari JN, Nadon NL, Wolf MK (1999) Evidence that CNS hypomyelination does not cause death of jumpy-msd mutant mice. Dev Neurosci 21:473–482

    PubMed  CAS  Google Scholar 

  99. Carenini S, Mäurer M, Werner A, Blazyca H, Toyka KV, Schmid CD, Raivich G, Martini R (2001) The role of macrophages in demyelinating peripheral nervous system of mice heterozygously deficient in P0. J Cell Biol 152:301–308

    PubMed  CAS  Google Scholar 

  100. Schmid CD, Stienekemeier M, Oehen S, Bootz F, Zielasek J, Gold R, Toyka KV, Schachner M, Martini R (2000) Immune deficiency in mouse models for inherited peripheral neuropathies leads to improved myelin maintenance. J Neurosci 10:729–735

    Google Scholar 

  101. Kobsar I, Berghoff M, Samsam M, Wessig C, Maurer M, Toyka KV, Martini R (2003) Preserved myelin integrity and reduced axonopathy in connexin32-deficient mice lacking the recombination activating gene-1. Brain 126:804–813

    PubMed  CAS  Google Scholar 

  102. Mastronardi FG, Ackerley CA, Arsenault L, Roots BI, Moscarello MA (1993) Demyelination in a transgenic mouse: a model for multiple sclerosis. J Neurosci Res 36:315–324

    PubMed  CAS  Google Scholar 

  103. Waldner H, Whitters MJ, Sobel RA, Collins M, Kuchroo VK (2000) Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc Natl Acad Sci USA 97:3412–3417

    PubMed  CAS  Google Scholar 

  104. Mendel I, Natarajan K, Ben Nun A, Shevach EM (2004) A novel protective model against experimental allergic encephalomyelitis in mice expressing a transgenic TCR-specific for myelin oligodendrocyte glycoprotein. J Neuroimmunol 149:10–21

    PubMed  CAS  Google Scholar 

  105. Liu GY, Fairchild PJ, Smith RM, Prowle JR, Kioussis D, Wraith DC (1995) Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3:407–415

    PubMed  CAS  Google Scholar 

  106. Pearson CI, Van Ewijk W, McDevitt HO (1997) Induction of apoptosis and T helper 2 (Th2) responses correlates with peptide affinity for the major histocompatibility complex in self-reactive T cell receptor transgenic mice. J Exp Med 185:583–599

    PubMed  CAS  Google Scholar 

  107. Huseby ES, Sather B, Huseby PG, Goverman J (2001) Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity 14:471–481

    PubMed  CAS  Google Scholar 

  108. Martini R, Toyka KV (2005) Immune-mediated components of hereditary demyelinating neuropathies: lessons from animal models and patients. Lancet 3:457–465

    Google Scholar 

Download references

Conflict of interest

The authors declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Wekerle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, G., Holz, A. & Wekerle, H. Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med 85, 1161–1173 (2007). https://doi.org/10.1007/s00109-007-0218-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0218-x

Keywords

Navigation