Skip to main content

Advertisement

Log in

EWS/FLI-1 oncoprotein subtypes impose different requirements for transformation and metastatic activity in a murine model

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Ewing sarcoma/primitive neuroectodermal tumors (EWS/PNET) are characterized by specific chromosomal translocations most often generating a chimeric EWS/FLI-1 gene. Depending on the number of juxtaposed exons assembled, several fusion types have been described with different incidences and prognoses. To assess the impact of each fusion type on the specific phenotypic, tumorigenic, and metastatic features of EWS/PNET, we developed an amenable system using a murine mesenchymal multipotent C3H10T1/2 cell line. Upon transduction of EWS/FLI-1, cells acquired dramatic morphological changes in vitro, including a smaller size and “neurite-like” membrane elongations. Chimeric fusion proteins conferred oncogenic properties in vitro, including anchorage-independent growth and an increased rate of proliferation. Furthermore, EWS/FLI-1 expression blocked mineralization, with concomitant repression of osteoblastic genes, and induced a dramatic repression of the adipocytic differentiation program. Moreover, EWS/FLI-1 promoted an aberrant neural phenotype by the de novo expression of specific neural genes. The intramuscular injection of transduced cells led to tumor development and the induction of overt osteolytic lesions. Analogously, to what was observed in human tumors, type 2 EWS/FLI-1 cells formed primary tumors in immunodeficient mice with a higher incidence and a lower latency than cells bearing types 1 and 3 fusions. By contrast, cells expressing types 2 and 3 fusions showed specific metastatic activity with a higher number of macroscopic metastases in soft tissues and osteolytic lesions in the limbs as compared to type-1-expressing cells. Therefore, the structure of each oncoprotein strongly influenced its tumorigenicity and metastagenicity. Thus, this model provides a basis for understanding the genetic determinants involved in Ewing tumor development and metastatic activity and represents a cellular system to analyze other oncoproteins involved in human sarcomagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gurney JG, Davis S, Severson RK, Fang JY, Ross JA, Robison LL (1996) Trends in cancer incidence among children in the US. Cancer 78(3):532–541

    Article  PubMed  CAS  Google Scholar 

  2. Arndt CA, Crist WM (1999) Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341(5):342–352

    Article  PubMed  CAS  Google Scholar 

  3. Burchill SA (2003) Ewing’s sarcoma: diagnostic, prognostic, and therapeutic implications of molecular abnormalities. J Clin Pathol 56(2):96–102

    Article  PubMed  CAS  Google Scholar 

  4. Paulussen M, Ahrens S, Craft AW, Dunst J, Frohlich B, Jabar S et al (1998) Ewing’s tumors with primary lung metastases: survival analysis of 114 (European Intergroup) Cooperative Ewing’s Sarcoma Studies patients. J Clin Oncol 16(9):3044–3052

    PubMed  CAS  Google Scholar 

  5. Cotterill SJ, Ahrens S, Paulussen M, Jurgens HF, Voute PA, Gadner H et al (2000) Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 18(17):3108–3114

    PubMed  CAS  Google Scholar 

  6. Mackall CL, Meltzer PS, Helman LJ (2002) Focus on sarcomas. Cancer Cell 2(3):175–178

    Article  PubMed  CAS  Google Scholar 

  7. de Alava E, Kawai A, Healey JH, Fligman I, Meyers PA, Huvos AG et al (1998) EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol 16(4):1248–1255

    PubMed  Google Scholar 

  8. Zoubek A, Dockhorn-Dworniczak B, Delattre O, Christiansen H, Niggli F, Gatterer-Menz I et al (1996) Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 14(4):1245–1251

    PubMed  CAS  Google Scholar 

  9. Huang HY, Illei PB, Zhao Z, Mazumdar M, Huvos AG, Healey JH et al (2005) Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol 23(3):548–558

    Article  PubMed  CAS  Google Scholar 

  10. Franchi A, Pasquinelli G, Cenacchi G, Della Rocca C, Gambini C, Bisceglia M et al (2001) Immunohistochemical and ultrastructural investigation of neural differentiation in Ewing sarcoma/PNET of bone and soft tissues. Ultrastruct Pathol 25(3):219–225

    Article  PubMed  CAS  Google Scholar 

  11. Arvand A, Denny CT (2001) Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 20(40):5747–5754

    Article  PubMed  CAS  Google Scholar 

  12. Knoop LL, Baker SJ (2001) EWS/FLI alters 5′-splice site selection. J Biol Chem 276(25):22317–22322

    Article  PubMed  CAS  Google Scholar 

  13. Hu-Lieskovan S, Zhang J, Wu L, Shimada H, Schofield DE, Triche TJ (2005) EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing’s family of tumors. Cancer Res 65(11):4633–4644

    Article  PubMed  CAS  Google Scholar 

  14. Gershon TR, Oppenheimer O, Chin SS, Gerald WL (2005) Temporally regulated neural crest transcription factors distinguish neuroectodermal tumors of varying malignancy and differentiation. Neoplasia 7(6):575–584

    Article  PubMed  CAS  Google Scholar 

  15. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524

    Article  PubMed  CAS  Google Scholar 

  16. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    Article  PubMed  CAS  Google Scholar 

  17. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  PubMed  CAS  Google Scholar 

  18. Reznikoff CA, Brankow DW, Heidelberger C (1973) Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res 33(12):3231–3238

    PubMed  CAS  Google Scholar 

  19. Reznikoff CA, Bertram JS, Brankow DW, Heidelberger C (1973) Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluence inhibition of cell division. Cancer Res 33(12):3239–3249

    PubMed  CAS  Google Scholar 

  20. Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17(4):771–779

    Article  PubMed  CAS  Google Scholar 

  21. Shin CS, Lecanda F, Sheikh S, Weitzmann L, Cheng SL, Civitelli R (2000) Relative abundance of different cadherins defines differentiation of mesenchymal precursors into osteogenic, myogenic, or adipogenic pathways. J Cell Biochem 78(4):566–577

    Article  PubMed  CAS  Google Scholar 

  22. Watsuji T, Okamoto Y, Emi N, Katsuoka Y, Hagiwara M (1997) Controlled gene expression with a reverse tetracycline-regulated retroviral vector (RTRV) system. Biochem Biophys Res Commun 234(3):769–773

    Article  PubMed  CAS  Google Scholar 

  23. Lecanda F, Towler DA, Ziambaras K, Cheng SL, Koval M, Steinberg TH et al (1998) Gap junctional communication modulates gene expression in osteoblastic cells. Mol Biol Cell 9(8):2249–2258

    PubMed  CAS  Google Scholar 

  24. Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R (2000) Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 151(4):931–944

    Article  PubMed  CAS  Google Scholar 

  25. Jiang Y, Prosper F, Verfaillie CM (2000) Opposing effects of engagement of integrins and stimulation of cytokine receptors on cell cycle progression of normal human hematopoietic progenitors. Blood 95(3):846–854

    PubMed  CAS  Google Scholar 

  26. Bixel G, Kloep S, Butz S, Petri B, Engelhardt B, Vestweber D (2004) Mouse CD99 participates in T-cell recruitment into inflamed skin. Blood 104(10):3205–3213

    Article  PubMed  CAS  Google Scholar 

  27. Kovar H (2005) Context matters: the hen or egg problem in Ewing’s sarcoma. Semin Cancer Biol 15(3):189–196

    Article  PubMed  CAS  Google Scholar 

  28. Votta TJ, Fantuzzo JJ, Boyd BC (2005) Peripheral primitive neuroectodermal tumor associated with the anterior mandible: a case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100(5):592–597

    Article  PubMed  Google Scholar 

  29. Eliazer S, Spencer J, Ye D, Olson E, Ilaria RL Jr (2003) Alteration of mesodermal cell differentiation by EWS/FLI-1, the oncogene implicated in Ewing’s sarcoma. Mol Cell Biol 23(2):482–492

    Article  PubMed  CAS  Google Scholar 

  30. Torchia EC, Jaishankar S, Baker SJ (2003) Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res 63(13):3464–3468

    PubMed  CAS  Google Scholar 

  31. Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR et al (2006) Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma. Cancer Cell 9(5):405–416

    Article  PubMed  CAS  Google Scholar 

  32. Castillero-Trejo Y, Eliazer S, Xiang L, Richardson JA, Ilaria RL Jr (2005) Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI-1-dependent, Ewing sarcoma-like tumors. Cancer Res 65(19):8698–8705

    Article  PubMed  CAS  Google Scholar 

  33. Riggi N, Cironi L, Provero P, Suva ML, Kaloulis K, Garcia-Echeverria C et al (2005) Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 65(24):11459–11468

    Article  PubMed  CAS  Google Scholar 

  34. Golub TR (2003) Mining the genome for combination therapies. Nat Med 9(5):510–511

    Article  PubMed  CAS  Google Scholar 

  35. Kovar H, Jug G, Aryee DN, Zoubek A, Ambros P, Gruber B et al (1997) Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is frequently lost in the Ewing family of tumors. Oncogene 15(18):2225–2232

    Article  PubMed  CAS  Google Scholar 

  36. Tsuchiya T, Sekine K, Hinohara S, Namiki T, Nobori T, Kaneko Y (2000) Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet 120(2):91–98

    Article  PubMed  CAS  Google Scholar 

  37. Lopez-Guerrero JA, Pellin A, Noguera R, Carda C, Llombart-Bosch A (2001) Molecular analysis of the 9p21 locus and p53 genes in Ewing family tumors. Lab Invest 81(6):803–814

    PubMed  CAS  Google Scholar 

  38. Szuhai K, Ijszenga M, Tanke HJ, Rosenberg C, Hogendoorn PC (2006) Molecular cytogenetic characterization of four previously established and two newly established Ewing sarcoma cell lines. Cancer Genet Cytogenet 166(2):173–179

    Article  PubMed  CAS  Google Scholar 

  39. Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6(2):171–183

    Article  PubMed  CAS  Google Scholar 

  40. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S et al (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25(2):371–379

    Article  PubMed  CAS  Google Scholar 

  41. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313

    Article  PubMed  CAS  Google Scholar 

  42. Aaronson SA, Todaro GJ (1968) Basis for the acquisition of malignant potential by mouse cells cultivated in vitro. Science 162(857):1024–1026

    Article  PubMed  CAS  Google Scholar 

  43. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  PubMed  CAS  Google Scholar 

  44. Jamieson CH, Weissman IL, Passegue E (2004) Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell 6(6):531–533

    PubMed  CAS  Google Scholar 

  45. Lin PP, Brody RI, Hamelin AC, Bradner JE, Healey JH, Ladanyi M (1999) Differential transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical heterogeneity in Ewing’s sarcoma. Cancer Res 59(7):1428–1432

    PubMed  CAS  Google Scholar 

  46. de Alava E, Panizo A, Antonescu CR, Huvos AG, Pardo-Mindan FJ, Barr FG et al (2000) Association of EWS-FLI1 type 1 fusion with lower proliferative rate in Ewing’s sarcoma. Am J Pathol 156(3):849–855

    PubMed  Google Scholar 

  47. Bernards R, Weinberg RA, van’t Veer LJ, Dai H, van de Vijver MJ, He YD et al (2002) A progression puzzle. Nature 418(6900):823

    Article  PubMed  CAS  Google Scholar 

  48. Aryee DN, Sommergruber W, Muehlbacher K, Dockhorn-Dworniczak B, Zoubek A, Kovar H (2000) Variability in gene expression patterns of Ewing tumor cell lines differing in EWS–FLI1 fusion type. Lab Invest 80(12):1833–1844

    Article  PubMed  CAS  Google Scholar 

  49. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46–54

    Article  PubMed  CAS  Google Scholar 

  50. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Article  PubMed  CAS  Google Scholar 

  51. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70(9–10):498–505

    Article  PubMed  Google Scholar 

  52. Avigad S, Cohen IJ, Zilberstein J, Liberzon E, Goshen Y, Ash S et al (2004) The predictive potential of molecular detection in the nonmetastatic Ewing family of tumors. Cancer 100(5):1053–1058

    Article  PubMed  Google Scholar 

  53. Schleiermacher G, Peter M, Oberlin O, Philip T, Rubie H, Mechinaud F et al (2003) Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J Clin Oncol 21(1):85–91

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. L. Montuenga, Dr. J. A. Martínez-Climent, and Josune Orbe for the useful discussions. We are grateful to Dr. M. San Julián, Dr. L. Sierrasesúmaga, Dr. D. Lozano, Dr. E. Bandrés and especially Dr. A. Patiño for the valuable insights and comments. We also thank S. Martínez and C. Zandueta for the excellent technical assistance, the members of the Morphology Core facility, especially A. Urbiola, D. García-Ros, J. Guillén, and all the members of CIMA’s Animal Core Facility. We are indebted to Prof. R. Jordana for his valuable help in the scanning microscopy. I.G. is a Postdoctoral Fellow of the Government of Navarra and the Foundation for Applied Medical Research (FIMA). E.A. is an Associate Research Professor of the CSIC (National Research Council). F.L. is an investigator from “Ramón y Cajal” Program. This work was supported by “UTE project FIMA” agreement and the Spanish Ministry of Health/Fondo de Investigaciones Sanitarias-Feder (RTICCC C03/10), PI020828 (to EA), ISC-RETIC RD06/0020, and PI042284 (to FL). F.L. is also supported by funds from the “La Caixa Foundation” and is a recipient of the “Ortiz de Landázuri” award (67/2005, Government of Navarra).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Lecanda.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, I., Vicent, S., de Alava, E. et al. EWS/FLI-1 oncoprotein subtypes impose different requirements for transformation and metastatic activity in a murine model. J Mol Med 85, 1015–1029 (2007). https://doi.org/10.1007/s00109-007-0202-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0202-5

Keywords

Navigation