Skip to main content
Log in

APOA5 gene variation modulates the effects of dietary fat intake on body mass index and obesity risk in the Framingham Heart Study

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Diet is an important environmental factor interacting with our genes to modulate the likelihood of developing lipid disorders and, consequently, cardiovascular disease risk. Our objective was to study whether dietary intake modulates the association between APOA5 gene variation and body weight in a large population-based study. Specifically, we have examined the interaction between the APOA5–1131T>C and 56C>G (S19W) polymorphisms and the macronutrient intake (total fat, carbohydrate, and protein) in their relation to the body mass index (BMI) and obesity risk in 1,073 men and 1,207 women participating in the Framingham Offspring Study. We found a consistent and statistically significant interaction between the −1131T>C single-nucleotide polymorphism (SNP; but not the 56C>G) and total fat intake for BMI. This interaction was dose-dependent, and no statistically significant heterogeneity by gender was detected. In subjects homozygous for the −1131T major allele, BMI increased as total fat intake increased. Conversely, this increase was not present in carriers of the −1131C minor allele. Accordingly, we found significant interactions in determining obesity and overweight risks. APOA5–1131C minor allele carriers had a lower obesity risk (OR, 0.61, 95%; CI, 0.39–0.98; P = 0.032) and overweight risk (OR, 0.63, 95%; CI, 0.41–0.96; P = 0.031) compared with TT subjects in the high fat intake group (≥30% of energy ) but not when fat intake was low (OR, 1.16, 95%; CI, 0.77–1.74; P = 0.47 and OR = 1.15, 95%; CI, 0.77–1.71; P = 0.48) for obesity and overweight, respectively). When specific fatty acid groups were analyzed, monounsaturated fatty acids showed the highest statistical significance for these interactions. In conclusion, the APOA5–1131T>C SNP, which is present in approximately 13% of this population, modulates the effect of fat intake on BMI and obesity risk in both men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cambien F (2005) Coronary heart disease and polymorphisms in genes affecting lipid metabolism and inflammation. Curr Atheroscler Rep 7:188–195

    Article  PubMed  CAS  Google Scholar 

  2. Lai CQ, Parnell LD, Ordovas JM (2005) The APOA1/C3/A4/A5 gene cluster, lipid metabolism and cardiovascular disease risk. Curr Opin Lipidol 16:153–166

    Article  PubMed  CAS  Google Scholar 

  3. Pajukanta P (2004) Do DNA sequence variants in ABCA1 contribute to HDL cholesterol levels in the general population? J Clin Invest 114(9):1244–1247

    Article  PubMed  CAS  Google Scholar 

  4. Semple RK, Chatterjee VK, O’Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116:581–589

    Article  PubMed  CAS  Google Scholar 

  5. Yang Q, Khoury MJ (1997) Evolving methods in genetic epidemiology. III. Gene–environment interaction in epidemiologic research. Epidemiol Rev 19:33–43

    PubMed  CAS  Google Scholar 

  6. Khoury MJ, Davis R, Gwinn M, Lindegren ML, Yoon P (2005) Do we need genomic research for the prevention of common diseases with environmental causes? Am J Epidemiol 161:799–805

    Article  PubMed  Google Scholar 

  7. Hunter DJ (2005) Gene-environment interactions in human diseases. Nat Rev Genet 6:287–298

    Article  PubMed  CAS  Google Scholar 

  8. Grigorenko EL (2005)The inherent complexities of gene-environment interactions. J Gerontol B Psychol Sci Soc Sci 60:53–64

    PubMed  Google Scholar 

  9. Ordovas JM, Corella D (2004) Nutritional genomics. Annu Rev Genomics Hum Genet 5:71–118

    Article  PubMed  CAS  Google Scholar 

  10. Mutch DM, Wahli W, Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J 19:1602–1616

    Article  PubMed  CAS  Google Scholar 

  11. Afman L, Muller M (2006) Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc 106:569–576

    Article  PubMed  CAS  Google Scholar 

  12. Corella D, Ordovas JM (2005) Single nucleotide polymorphisms that influence lipid metabolism: interaction with dietary factors. Annu Rev Nutr 25:341–390

    Article  PubMed  CAS  Google Scholar 

  13. Ordovas JM, Corella D, Demissie S, Cupples LA, Couture P, Coltell O, Wilson PW, Schaefer EJ, Tucker KL (2002) Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism: evidence of a strong dose effect in this gene-nutrient interaction in the Framingham Study. Circulation 106:2315–2321

    Article  PubMed  CAS  Google Scholar 

  14. Dwyer JH, Allayee H, Dwyer KM, Fan J, Wu H, Mar R, Lusis AJ, Mehrabian M (2004) Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 350:29–37

    Article  PubMed  CAS  Google Scholar 

  15. Corella D, Tucker K, Lahoz C, Coltell O, Cupples LA, Wilson PW, Schaefer EJ, Ordovas JM (2001) Alcohol drinking determines the effect of the APOE locus on LDL-cholesterol concentrations in men: the Framingham Offspring Study. Am J Clin Nutr 73:736–745

    PubMed  CAS  Google Scholar 

  16. Memisoglu A, Hu FB, Hankinson SE, Manson JE, De Vivo I, Willett WC, Hunter DJ (2003) Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass. Hum Mol Genet 12:2923–2929

    Article  PubMed  CAS  Google Scholar 

  17. Miyaki K, Sutani S, Kikuchi H, Takei I, Murata M, Watanabe K, Omae K (2005) Increased risk of obesity resulting from the interaction between high energy intake and the Trp64Arg polymorphism of the beta3-adrenergic receptor gene in healthy Japanese men. J Epidemiol 15:203–210

    Article  PubMed  Google Scholar 

  18. Marques-Vidal P, Bongard V, Ruidavets JB, Fauvel J, Hanaire-Broutin H, Perret B, Ferrieres J (2003) Obesity and alcohol modulate the effect of apolipoprotein E polymorphism on lipids and insulin. Obes Res 11:1200–1206

    PubMed  CAS  Google Scholar 

  19. Elosua R, Demissie S, Cupples LA, Meigs JB, Wilson PW, Schaefer EJ, Corella D, Ordovas JM (2003) Obesity modulates the association among APOE genotype, insulin, and glucose in men. Obes Res 11:1502–1508

    Article  PubMed  CAS  Google Scholar 

  20. Corella D, Ordovas JM (2004) The metabolic syndrome: a crossroad for genotype–phenotype associations in atherosclerosis. Curr Atheroscler Rep 6:186–196

    Article  PubMed  Google Scholar 

  21. Elosua R, Ordovas JM, Cupples LA, Lai CQ, Demissie S, Fox CS, Polak JF, Wolf PA, D’Agostino RB Sr, O’donnell CJ (2006) Variants at the APOA5 locus, association with carotid atherosclerosis, and modification by obesity: the Framingham Study. J Lipid Res 47:990–996

    Article  PubMed  CAS  Google Scholar 

  22. Lai CQ, Corella D, Demissie S, Cupples LA, Adiconis X, Zhu Y, Parnell LD, Tucker KL, Ordovas JM (2006) Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: the Framingham Heart Study. Circulation 113:2062–2070

    Article  PubMed  CAS  Google Scholar 

  23. Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM, Rubin EM (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294:169–173

    Article  PubMed  CAS  Google Scholar 

  24. Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE (2002) Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet 11:3039–3046

    Article  PubMed  CAS  Google Scholar 

  25. Lai CQ, Tai ES, Tan CE, Cutter J, Chew SK, Zhu YP, Adiconis X, Ordovas JM (2003) The APOA5 locus is a strong determinant of plasma triglyceride concentrations across ethnic groups in Singapore. J Lipid Res 44:2365–2373

    Article  PubMed  CAS  Google Scholar 

  26. Lai CQ, Demissie S, Cupples LA, Zhu Y, Adiconis X, Parnell LD, Corella D, Ordovas JM (2004) Influence of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD risk in the Framingham Heart Study. J Lipid Res 45:2096–2105

    Article  PubMed  CAS  Google Scholar 

  27. Hodoglugil U, Tanyolac S, Williamson DW, Huang Y, Mahley RW (2006) Apolipoprotein A–V: a potential modulator of plasma triglyceride levels in Turks. J Lipid Res 47:144–153

    Article  PubMed  CAS  Google Scholar 

  28. Pennacchio LA, Olivier M, Hubacek JA, Krauss RM, Rubin EM, Cohen JC (2002) Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11:3031–3038

    Article  PubMed  CAS  Google Scholar 

  29. Merkel M, Heeren J (2005) Give me A5 for lipoprotein hydrolysis! J Clin Invest 115:2694–2696

    Article  PubMed  CAS  Google Scholar 

  30. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, Laatsch A, Heeren J (2005) Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. Biol Chem 280:21553–21560

    Article  CAS  Google Scholar 

  31. Mead JR, Irvine SA, Ramji DP (2002) Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med 80:753–769

    Article  PubMed  CAS  Google Scholar 

  32. Koike T, Liang J, Wang X, Ichikawa T, Shiomi M, Liu G, Sun H, Kitajima S, Morimoto M, Watanabe T, Yamada N, Fan J (2004) Overexpression of lipoprotein lipase in transgenic Watanabe heritable hyperlipidemic rabbits improves hyperlipidemia and obesity. J Biol Chem 279:7521–7529

    Article  PubMed  CAS  Google Scholar 

  33. Prieur X, Coste H, Rodriguez JC (2003) The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. J Biol Chem 278:25468–25480

    Article  PubMed  CAS  Google Scholar 

  34. Prieur X, Huby T, Coste H, Schaap FG, Chapman MJ, Rodriguez JC (2005) Thyroid hormone regulates the hypotriglyceridemic gene APOA5. J Biol Chem 280:27533–27543

    Article  PubMed  CAS  Google Scholar 

  35. Feinleib M, Kannel WB, Garrison RJ, McNamara PM, Castelli WP (1975) The Framingham Offspring Study. Design and preliminary data. Prev Med 4:518–525

    Article  PubMed  CAS  Google Scholar 

  36. Osgood D, Corella D, Demissie S, Cupples LA, Wilson PW, Meigs JB, Schaefer EJ, Coltell O, Ordovas JM (2003) Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes: the Framingham Study. J Clin Endocrinol Metab 88:2869–2879

    Article  PubMed  CAS  Google Scholar 

  37. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC (1992) Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 135:1114–1126

    PubMed  CAS  Google Scholar 

  38. Henneman P, Schaap FG, Havekes LM, Rensen PC, Frants RR, van Tol A, Hattori H, Smelt AH, van Dijk KW (2006) Plasma apoAV levels are markedly elevated in severe hypertriglyceridemia and positively correlated with the APOA5 S19W polymorphism. Atherosclerosis (in press)

  39. Klos KL, Hamon S, Clark AG, Boerwinkle E, Liu K, Sing CF (2005) APOA5 polymorphisms influence plasma triglycerides in young, healthy African Americans and whites of the CARDIA Study. J Lipid Res 46:564–571

    Article  PubMed  CAS  Google Scholar 

  40. Hubacek JA, Skodova Z, Adamkova V, Lanska V, Poledne R (2004) The influence of APOAV polymorphisms (T-1131>C and S19>W) on plasma triglyceride levels and risk of myocardial infarction. Clin Genet 65:126–130

    Article  PubMed  CAS  Google Scholar 

  41. Lee KW, Ayyobi AF, Frohlich JJ, Hill JS (2004) APOA5 gene polymorphism modulates levels of triglyceride, HDL cholesterol and FERHDL but is not a risk factor for coronary artery disease. Atherosclerosis 176:165–172

    Article  PubMed  CAS  Google Scholar 

  42. Aberle J, Evans D, Beil FU, Seedorf U (2005) A polymorphism in the apolipoprotein A5 gene is associated with weight loss after short-term diet. Clin Genet 68:152–154

    Article  PubMed  CAS  Google Scholar 

  43. Martin S, Nicaud V, Humphries SE, Talmud PJ; EARS Group (2003) Contribution of APOA5 gene variants to plasma triglyceride determination and to the response to both fat and glucose tolerance challenges. Biochim Biophys Acta 1637:217–225

    PubMed  CAS  Google Scholar 

  44. Memisoglu A, Hu FB, Hankinson SE, Manson JE, De Vivo I, Willett WC, Hunter DJ (2003) Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass. Hum Mol Genet 12:2923–2929

    Article  PubMed  CAS  Google Scholar 

  45. Martinelli N, Trabetti E, Bassi A, Girelli D, Friso S, Pizzolo F, Sandri M, Malerba G, Pignatti PF, Corrocher R, Olivieri O (2006) The −1131 T>C and S19W APOA5 gene polymorphisms are associated with high levels of triglycerides and apolipoprotein C-III, but not with coronary artery disease: an angiographic study. Atherosclerosis (in press)

  46. Liu H, Zhang S, Lin J, Li H, Huang A, Xiao C, Li X, Su Z, Wang C, Nebert DW, Zhou B, Zheng K, Shi J, Li G, Huang D (2005) Association between DNA variant sites in the apolipoprotein A5 gene and coronary heart disease in Chinese. Metabolism 54:568–572

    Article  PubMed  CAS  Google Scholar 

  47. Ruiz-Narvaez EA, Yang Y, Nakanishi Y, Kirchdorfer J, Campos H (2005) APOC3/A5 haplotypes, lipid levels, and risk of myocardial infarction in the Central Valley of Costa Rica. J Lipid Res 46:2605–2613

    Article  PubMed  CAS  Google Scholar 

  48. Szalai C, Keszei M, Duba J, Prohaszka Z, Kozma GT, Csaszar A, Balogh S, Almassy Z, Fust G, Czinner A (2004) Polymorphism in the promoter region of the apolipoprotein A5 gene is associated with an increased susceptibility for coronary artery disease. Atherosclerosis 173:109–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Heart, Lung, and Blood Institute contract N01-HC-25195 and grant HL-54776, by contracts 53-K06-5-10 and 58-1950-9-001 from the US Department of Agriculture Research Service, and by grants from the American Heart Association (0335432T) and the Spanish Ministerio de Educación y Ciencia (PR2006-0258) and the Spanish Ministeriode Sanidad (CB06/03/0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Ordovas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corella, D., Lai, CQ., Demissie, S. et al. APOA5 gene variation modulates the effects of dietary fat intake on body mass index and obesity risk in the Framingham Heart Study. J Mol Med 85, 119–128 (2007). https://doi.org/10.1007/s00109-006-0147-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0147-0

Keywords

Navigation