Skip to main content
Log in

Suicidal erythrocyte death in sepsis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Sequelae of sepsis include anemia which presumably results from accelerated clearance of erythrocytes from circulating blood. The underlying mechanisms, however, remained hitherto elusive. Most recent studies disclosed that increased cytosolic Ca2+ activity and ceramide both trigger suicidal erythrocyte death (i.e., eryptosis), which is characterized by lipid scrambling of the cell membrane leading to phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing erythrocytes may adhere to vascular walls or may be engulfed by macrophages equipped with phosphatidylserine receptors. To explore whether sepsis leads to eryptosis, erythrocytes from healthy volunteers were exposed to plasma of patients suffering from sepsis, or to supernatants from sepsis producing pathogens. Then, phosphatidylserine exposure (annexin V binding), cell volume (forward scatter), cytosolic Ca2+ activity (Fluo3 fluorescence), and ceramide formation (anti-ceramide antibody) were determined by flow cytometry. Challenge of erythrocytes with plasma from the patients but not with plasma from healthy individuals triggered annexin V binding. The effect of patient plasma on erythrocyte annexin V binding was paralleled by formation of ceramide and a significant increase of cytosolic Ca2+ activity. Exposure of erythrocytes to supernatant of pathogens similarly induced eryptosis, an effect correlating with sphingomyelinase activity. The present observations disclose a novel pathophysiological mechanism leading to anemia and derangement of microcirculation during sepsis. Exposure to plasma from septic patients triggers phosphatidylserine exposure leading to adherence to the vascular wall and clearance from circulating blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aird WC (2003) The hematologic system as a marker of organ dysfunction in sepsis. Mayo Clin Proc 78:869–881

    Article  PubMed  CAS  Google Scholar 

  2. Sessler CN, Perry JC, Varney KL (2004) Management of severe sepsis and septic shock. Curr Opin Crit Care 10:354–363

    Article  PubMed  Google Scholar 

  3. McArthur HL, Dalal BI, Kollmannsberger C (2006) Intravascular hemolysis as a complication of clostridium perfringens sepsis. J Clin Oncol 24:2387–2388

    Article  PubMed  Google Scholar 

  4. Vaiopoulos G, Calpadaki C, Sinifakoulis H, Konstantopoulos K, Avlami A, Stefanou J, Pangalis GA (2004) Massive intravascular hemolysis: a fatal complication of clostridium perfringens septicemia in a patient with acute myeloid leukemia. Leuk Lymphoma 45:2157–2159

    Article  PubMed  Google Scholar 

  5. Lang KS, Duranton C, Poehlmann H, Myssina S, Bauer C, Lang F, Wieder T, Huber SM (2003) Cation channels trigger apoptotic death of erythorcytes. Cell Death Differ 10:249–256

    Article  PubMed  CAS  Google Scholar 

  6. Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285:C1553–C1560

    PubMed  CAS  Google Scholar 

  7. Woon LA, Holland JW, Kable EP, Roufogalis BD (1999) Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts. Cell Calcium 25:313–320

    Article  PubMed  CAS  Google Scholar 

  8. Lang KS, Myssina S, Brand V, Sandu C, Lang PA, Berchtold S, Huber SM, Lang F, Wieder T (2004) Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ 11:231–243

    Article  PubMed  CAS  Google Scholar 

  9. Closse C, Dachary-Prigent J, Boisseau MR (1999) Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol 107:300–302

    Article  PubMed  CAS  Google Scholar 

  10. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    Article  PubMed  CAS  Google Scholar 

  11. Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci USA 95:3077–3081

    Article  PubMed  CAS  Google Scholar 

  12. Lang KS, Lang PA, Bauer C, Duranton C, Wieder T, Huber SM, Lang F (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15:195–202

    Article  PubMed  CAS  Google Scholar 

  13. Barvitenko NN, Adragna NC, Weber RE (2005) Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 15:1–18

    Article  PubMed  CAS  Google Scholar 

  14. Bosman GJ, Willekens FL, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16:1–8

    Article  PubMed  CAS  Google Scholar 

  15. Rice L, Alfrey CP (2005) The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem 15:245–250

    Article  PubMed  CAS  Google Scholar 

  16. Schwarzer E, Kühn H, Valente E, Arese P (2005) Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell Physiol Biochem 16:133–146

    Article  PubMed  CAS  Google Scholar 

  17. Lang PA, Beringer O, Nicolay JP, Amon O, Kempe DS, Hermle T, Attanasio P, Akel A, Schafer R, Friedrich B, Risler T, Baur M, Olbricht CJ, Zimmerhackl LB, Zipfel PF, Wieder T, Lang F (2006) Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med 84:378–388

    Article  PubMed  Google Scholar 

  18. Lang PA, Kaiser S, Myssina S, Birka C, Weinstock C, Northoff H, Wieder T, Lang F, Huber SM (2004) Effect of Vibrio parahaemolyticus haemolysin on human erythrocytes. Cell Microbiol 6:391–400

    Article  PubMed  CAS  Google Scholar 

  19. Bohach GA, Dinges MM, Mitchell DT, Ohlendorf DH, Schlievert PM (1997) Exotoxins. In: Crossley KB, Archer GL (eds) The staphylococci in human disease. Churchill Livingstone, New York, pp 83–111

    Google Scholar 

  20. Goerke C, Koller J, Wolz C (2006) Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob Agents Chemother 50:171–177

    Article  PubMed  CAS  Google Scholar 

  21. Brugnara C, de Franceschi L, Alper SL (1993) Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J Clin Invest 92:520–526

    Article  PubMed  CAS  Google Scholar 

  22. Anderson DR, Davis JL, Carraway KL (1977) Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase, and a membrane-bound protease. J Biol Chem 252:6617–6623

    PubMed  CAS  Google Scholar 

  23. Lang PA, Kempe DS, Myssina S, Tanneur V, Birka C, Laufer S, Lang F, Wieder T, Huber SM (2005) PGE(2) in the regulation of programmed erythrocyte death. Cell Death Differ 12:415–428

    Article  PubMed  CAS  Google Scholar 

  24. Claus RA, Bunck AC, Bockmeyer CL, Brunkhorst FM, Losche W, Kinscherf R, Deigner HP (2005) Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J 19:1719–1721

    PubMed  CAS  Google Scholar 

  25. Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbins E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6:431–439

    Article  PubMed  CAS  Google Scholar 

  26. Falcone S, Perrotta C, De Palma C, Pisconti A, Sciorati C, Capobianco A, Rovere-Querini P, Manfredi AA, Clementi E (2004) Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3′,5′-monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells. J Immunol 173:4452–4463

    PubMed  CAS  Google Scholar 

  27. Lang KS, Myssina S, Lang PA, Tanneur V, Kempe DS, Mack AF, Huber SM, Wieder T, Lang F, Duranton C (2004) Inhibition of erythrocyte phosphatidylserine exposure by urea and Cl. Am J Physiol Renal Physiol 286:F1046–F1053

    Article  PubMed  CAS  Google Scholar 

  28. Fowkes FJ, Imrie H, Migot-Nabias F, Michon P, Justice A, Deloron P, Luty AJ, Day KP (2006) Association of haptoglobin levels with age, parasite density, and haptoglobin genotype in a malaria-endemic area of Gabon. Am J Trop Med Hyg 74:26–30

    PubMed  CAS  Google Scholar 

  29. Rogerson S (2006) What is the relationship between haptoglobin, malaria, and anaemia? PLoS Med 3:e200

    Article  PubMed  CAS  Google Scholar 

  30. Kempe DS, Lang PA, Duranton C, Akel A, Lang KS, Huber SM, Wieder T, Lang F (2006) Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J 20:368–370

    PubMed  CAS  Google Scholar 

  31. Myssina S, Huber SM, Birka C, Lang PA, Lang KS, Wieder T, Lang F (2003) Inhibition of erythrocyte cation channels by erythropoietin. J Am Soc Nephrol 14:2750–2757

    Article  PubMed  CAS  Google Scholar 

  32. Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325–328

    Article  PubMed  CAS  Google Scholar 

  33. Kolesnick RN, Kronke M (1998) Regulation of ceramide production and apoptosis. Annu Rev Physiol 60:643–665

    Article  PubMed  CAS  Google Scholar 

  34. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    Article  PubMed  CAS  Google Scholar 

  35. Perretti M, Solito E (2004) Annexin 1 and neutrophil apoptosis. Biochem Soc Trans 32:507–510

    Article  PubMed  CAS  Google Scholar 

  36. Oberholzer C, Tschoeke SK, Moldawer LL, Oberholzer A (2006) Local thymic caspase-9 inhibition improves survival during polymicrobial sepsis in mice. J Mol Med 84:389–395

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic. This study was supported by the Deutsche Forschungsgemeinschaft, Nr. La 315/6-1 and La 315/13-1, by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (Center for Interdisciplinary Clinical Research: 01 KS 9602), the Promotionskolleg Molecular Medicine # 1547, and the Dr. Karl Kuhn-Stiftung. Daniela S. Kempe and Ahmad Akel equally contributed to the study and thus share first authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempe, D.S., Akel, A., Lang, P.A. et al. Suicidal erythrocyte death in sepsis. J Mol Med 85, 273–281 (2007). https://doi.org/10.1007/s00109-006-0123-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0123-8

Keywords

Navigation