Skip to main content
Log in

Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Loss of intestinal mucosa integrity is an important factor in the pathogenesis of inflammatory bowel disease (IBD). The aim of this study was to characterize expression changes and allelic variants of genes related to intestinal epithelial barrier function in this disease. Therefore, ileal and colonic mucosal biopsies from nonaffected regions of patients with ulcerative colitis (UC) and Crohn’s disease (CD), as well as non-IBD probands, were subjected to Affymetrix DNA-microarray analysis. Real-time reverse transcription polymerase chain reaction was used for verification in larger IBD sample numbers. Disturbed mRNA expression was identified for several mucin genes in both disease groups and tissues. A significant downregulation in the colon was obtained for MUC2 in CD and MUC12 in CD and UC. Expression analysis of all dysregulated mucins in a broad human tissue panel revealed dominant epithelial tissue-specific transcription. In silico analysis of the regulatory regions of these mucins indicated nuclear factor κB (NFκB) binding sites in each promoter. Furthermore, NFκB was overrepresented in mucin promoters and a component of a specific combination of transcription factors (composite module). In vivo stimulation experiments in the adenocarcinoma cell line LS174T showed inducible mucin expression by the cytokines tumor necrosis factor-α and transforming growth factor-β, which could be blocked by NFκB signaling inhibitors. Allelic discrimination screening obtained statistically significant associations for the MUC2–V116M (P = 0.003) polymorphism with CD and for MUC4–A585S (P = 0.025), as well as MUC13–R502S (P = 0.0003) with UC. These data suggest that the disturbed expression of mucin genes and the connection to the NFκB pathway may influence the integrity of the intestine and therefore contribute to the pathophysiology of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  PubMed  CAS  Google Scholar 

  2. Pullan RD, Thomas GA, Rhodes M, Newcombe RG, Williams GT, Allen A, Rhodes J (1994) Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35:353–359

    PubMed  CAS  Google Scholar 

  3. Tytgat KM, van der Wal JW, Einerhand AW, Buller HA, Dekker J (1996) Quantitative analysis of MUC2 synthesis in ulcerative colitis. Biochem Biophys Res Commun 224:397–405

    Article  PubMed  CAS  Google Scholar 

  4. Parker N, Tsai HH, Ryder SD, Raouf AH, Rhodes JM (1995) Increased rate of sialylation of colonic mucin by cultured ulcerative colitis mucosal explants. Digestion 56:52–56

    Article  PubMed  CAS  Google Scholar 

  5. Raouf AH, Tsai HH, Parker N, Hoffman J, Walker RJ, Rhodes JM (1992) Sulphation of colonic and rectal mucin in inflammatory bowel disease: reduced sulphation of rectal mucus in ulcerative colitis. Clin Sci (Lond) 83:623–626

    CAS  Google Scholar 

  6. Dekker J, Rossen JW, Buller HA, Einerhand AW (2002) The MUC family: an obituary. Trends Biochem Sci 27:126–131

    Article  PubMed  CAS  Google Scholar 

  7. Shirazi T, Longman RJ, Corfield AP, Probert CS (2000) Mucins and inflammatory bowel disease. Postgrad Med J 76:473–478

    Article  PubMed  CAS  Google Scholar 

  8. Gum JR, Byrd JC, Hicks JW, Toribara NW, Lamport DT, Kim YS (1989) Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem 264:6480–6487

    PubMed  CAS  Google Scholar 

  9. Gum JR, Hicks JW, Swallow DM, Lagace RL, Byrd JC, Lamport DT, Siddiki B, Kim YS (1990) Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem Biophys Res Commun 171:407–415

    Article  PubMed  CAS  Google Scholar 

  10. Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA (1990) Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem 265:15294–15299

    PubMed  CAS  Google Scholar 

  11. Porchet N, Dufosse J, Audie JP, Duperat VG, Perini JM, Nguyen VC, Degand P, Aubert JP (1991) Structural features of the core proteins of human airway mucins ascertained by cDNA cloning. Am Rev Respir Dis 144:S15–S18

    PubMed  CAS  Google Scholar 

  12. Pigny P, Guyonnet-Duperat V, Hill AS, Pratt WS, Galiegue-Zouitina S, d’Hooge MC, Laine A, Van Seuningen I, Degand P, Gum JR, Kim YS, Swallow DM, Aubert JP, Porchet N (1996) Human mucin genes assigned to 11p15.5: identification and organization of a cluster of genes. Genomics 38:340–352

    Article  PubMed  CAS  Google Scholar 

  13. Satsangi J, Parkes M, Louis E, Hashimoto L, Kato N, Welsh K, Terwilliger JD, Lathrop GM, Bell JI, Jewell DP (1996) Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 14:199–202

    Article  PubMed  CAS  Google Scholar 

  14. Langmann T, Moehle C, Mauerer R, Scharl M, Liebisch G, Zahn A, Stremmel W, Schmitz G (2004) Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 127:26–40

    Article  PubMed  CAS  Google Scholar 

  15. Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E (2003) MATCH: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31:3576–3579

    Article  PubMed  CAS  Google Scholar 

  16. Chen Y, Zhao YH, Kalaslavadi TB, Hamati E, Nehrke K, Le AD, Ann DK, Wu R (2004) Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am J Respir Cell Mol Biol 30:155–165

    Article  PubMed  CAS  Google Scholar 

  17. Hovenberg HW, Davies JR, Herrmann A, Linden CJ, Carlstedt I (1996) MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions. Glycoconj J 13:839–847

    Article  PubMed  CAS  Google Scholar 

  18. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Munch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31:374–378

    Article  PubMed  CAS  Google Scholar 

  19. Kel A, Reymann S, Matys V, Nettesheim P, Wingender E, Borlak J (2004) A novel computational approach for the prediction of networked transcription factors of aryl hydrocarbon-receptor-regulated genes. Mol Pharmacol 66:1557–1572

    Article  PubMed  CAS  Google Scholar 

  20. Perrais M, Pigny P, Ducourouble MP, Petitprez D, Porchet N, Aubert JP, Van Seuningen I (2001) Characterization of human mucin gene MUC4 promoter: importance of growth factors and proinflammatory cytokines for its regulation in pancreatic cancer cells. J Biol Chem 276:30923–30933

    Article  PubMed  CAS  Google Scholar 

  21. Van Seuningen I, Perrais M, Pigny P, Porchet N, Aubert JP (2000) Sequence of the 5′-flanking region and promoter activity of the human mucin gene MUC5B in different phenotypes of colon cancer cells. Biochem J 348(Pt 3):675–686

    Article  PubMed  Google Scholar 

  22. Karban AS, Okazaki T, Panhuysen CI, Gallegos T, Potter JJ, Bailey-Wilson JE, Silverberg MS, Duerr RH, Cho JH, Gregersen PK, Wu Y, Achkar JP, Dassopoulos T, Mezey E, Bayless TM, Nouvet FJ, Brant SR (2004) Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 13:35–45

    Article  PubMed  CAS  Google Scholar 

  23. Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93:9090–9095

    Article  PubMed  CAS  Google Scholar 

  24. Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmali V, Rao AS, Madara JL (2000) Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289:1560–1563

    Article  PubMed  CAS  Google Scholar 

  25. Cario E (2005) Bacterial interactions with cells of the intestinal mucosa: toll-like receptors and NOD2. Gut 54:1182–1193

    Article  PubMed  CAS  Google Scholar 

  26. Jono H, Shuto T, Xu H, Kai H, Lim DJ, Gum JR Jr, Kim YS, Yamaoka S, Feng XH, Li JD (2002) Transforming growth factor-beta -Smad signaling pathway cooperates with NF-kappa B to mediate nontypeable Haemophilus influenzae-induced MUC2 mucin transcription. J Biol Chem 277:45547–45557

    Article  PubMed  CAS  Google Scholar 

  27. Brant SR, Shugart YY (2004) Inflammatory bowel disease gene hunting by linkage analysis: rationale, methodology, and present status of the field. Inflamm Bowel Dis 10:300–311

    Article  PubMed  Google Scholar 

  28. Kyo K, Parkes M, Takei Y, Nishimori H, Vyas P, Satsangi J, Simmons J, Nagawa H, Baba S, Jewell D, Muto T, Lathrop GM, Nakamura Y (1999) Association of ulcerative colitis with rare VNTR alleles of the human intestinal mucin gene, MUC3. Hum Mol Genet 8:307–311

    Article  PubMed  CAS  Google Scholar 

  29. Kyo K, Muto T, Nagawa H, Lathrop GM, Nakamura Y (2001) Associations of distinct variants of the intestinal mucin gene MUC3A with ulcerative colitis and Crohn’s disease. J Hum Genet 46:5–20

    Article  PubMed  CAS  Google Scholar 

  30. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    Article  PubMed  CAS  Google Scholar 

  31. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606

    Article  PubMed  CAS  Google Scholar 

  32. Mills JC, Roth KA, Cagan RL, Gordon JI (2001) DNA microarrays and beyond: completing the journey from tissue to cell. Nat Cell Biol 3:E175–E178

    Article  PubMed  CAS  Google Scholar 

  33. Tytgat KM, Opdam FJ, Einerhand AW, Buller HA, Dekker J (1996) MUC2 is the prominent colonic mucin expressed in ulcerative colitis. Gut 38:554–563

    PubMed  CAS  Google Scholar 

  34. Van Klinken BJ, Dekker J, van Gool SA, van Marle J, Buller HA, Einerhand AW (1998) MUC5B is the prominent mucin in human gallbladder and is also expressed in a subset of colonic goblet cells. Am J Physiol 274:G871–G878

    PubMed  Google Scholar 

  35. Van den Brink GR, Tytgat KM, Van der Hulst RW, Van der Loos CM, Einerhand AW, Buller HA, Dekker J (2000) H pylori colocalises with MUC5AC in the human stomach. Gut 46:601–607

    Article  PubMed  Google Scholar 

  36. van der Sluis M, de Koning BAE, Velcich A, van Seuningen I, Buller HA, Dekker J, Renes IB, Einerhand AWC (2006) Spontaneous development of colitis in mice deficient for Mucin 2. Eur J Gastroenterol Hepatol 18:A27 (abstract)

    Article  Google Scholar 

  37. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295:1726–1729

    Article  PubMed  CAS  Google Scholar 

  38. Buisine MP, Desreumaux P, Debailleul V, Gambiez L, Geboes K, Ectors N, Delescaut MP, Degand P, Aubert JP, Colombel JF, Porchet N (1999) Abnormalities in mucin gene expression in Crohn’s disease. Inflamm Bowel Dis 5:24–32

    Article  PubMed  CAS  Google Scholar 

  39. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    Article  PubMed  CAS  Google Scholar 

  40. Iwashita J, Sato Y, Sugaya H, Takahashi N, Sasaki H, Abe T (2003) mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol Cell Biol 81:275–282

    Article  PubMed  CAS  Google Scholar 

  41. Young KJ, Kim CH, Kim KS, Choi YS, Lee JG, Yoon JH (2004) Extracellular signal-regulated kinase is involved in tumor necrosis factor-alpha-induced MUC5AC gene expression in cultured human nasal polyp epithelial cells. Acta Otolaryngol 124:953–957

    Article  CAS  Google Scholar 

  42. Papadakis KA, Targan SR (2000) Tumor necrosis factor: biology and therapeutic inhibitors. Gastroenterology 119:1148–1157

    Article  PubMed  CAS  Google Scholar 

  43. Hahm KB, Im YH, Parks TW, Park SH, Markowitz S, Jung HY, Green J, Kim SJ (2001) Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut 49:190–198

    Article  PubMed  CAS  Google Scholar 

  44. Wayne ML, McIntyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA 99:14903–14906

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Deutsche Forschungsgemeinschaft SFB585-A1 and the Dietmar Hopp Foundation. We thank Bettina Hartl, Manfred Haas, Steffanie Ebert, and Cornelia Hasenknopf for outstanding technical assistance. Parts of software and databases used in this work were funded by a grant of the German Ministry of Education and Research together with BioRegioN GmbH “BioProfil,” grant no. 0313092; EU grants: “TRANSISTOR” and INTAS grant No:03-51-5218, as well as by BIOBASE GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Schmitz.

Additional information

Christoph Moehle and Nikolaus Ackermann contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

Composite Module analysis result of human promoters. Displayed are the scores of each TF matrix and the overall composite score. (PDF 1815 kb)

ESM Fig. 1

(PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moehle, C., Ackermann, N., Langmann, T. et al. Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease. J Mol Med 84, 1055–1066 (2006). https://doi.org/10.1007/s00109-006-0100-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0100-2

Keywords

Navigation