Skip to main content
Log in

A CD40–CD95L fusion protein interferes with CD40L-induced prosurvival signaling and allows membrane CD40L-restricted activation of CD95

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We analyzed a novel bifunctional fusion protein, CD40ed–CD95Led, consisting amino-terminally of the extracellular domain of CD40 and carboxy-terminally of the extracellular domain of CD95L. On cells lacking CD40L, this fusion protein is poorly active with respect to CD95 activation [median effective dose (ED50)>1 μg/ml], but it stimulates CD95 signaling with high efficiency upon binding to membrane-expressed CD40L (ED50<1 ng/ml). Thus, cell surface immobilization mediated by the CD40 part of the molecule unmasks the high-latent, CD95-stimulating capacity of the otherwise poorly active CD95L fusion protein. Moreover, interaction of the CD40 part of CD40ed–CD95Led with CD40L prevents the activation of cellular CD40. The CD40ed–CD95Led fusion protein therefore simultaneously blocks antiapoptotic CD40 activation and induces CD95-mediated apoptosis. Indeed, T47D cells displaying an antiapoptotic autocrine CD40–CD40L signaling loop were significantly more sensitive toward CD40ed–CD95Led than toward soluble CD95L artificially activated by crosslinking. Fusion proteins of RANK and CD95L (RANKed–CD95Led) and CD40 and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) (CD40ed–TRAILed), with domain architectures similar to CD40ed–Cd95Led, displayed RANKL-dependent CD95 and CD40L-dependent TRAILR2 activation, respectively, indicating the principle feasibility of this fusion protein design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ed:

extracellular domain

TRAIL:

tumor necrosis factor-related apoptosis inducing ligand

References

  1. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  PubMed  CAS  Google Scholar 

  2. Fesik SW (2000) Insights into programmed cell death through structural biology. Cell 103:273–282

    Article  PubMed  CAS  Google Scholar 

  3. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    Article  PubMed  CAS  Google Scholar 

  4. Wajant H, Moosmayer D, Wuest T, Bartke T, Gerlach E, Schonherr U, Peters N, Scheurich P, Pfizenmaier K (2001) Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20:4101–4106

    Article  PubMed  CAS  Google Scholar 

  5. Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A, Tschopp J (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187:1205–1213

    Article  PubMed  CAS  Google Scholar 

  6. Dhein J, Daniel PT, Trauth BC, Oehm A, Moller P, Krammer PH (1992) Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J Immunol 149:3166–3173

    PubMed  CAS  Google Scholar 

  7. Vilcek J, Feldmann M (2004) Historical review: cytokines as therapeutics and targets of therapeutics. Trends Pharmacol Sci 25:201–209

    Article  PubMed  CAS  Google Scholar 

  8. Wittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F (2004) RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta 1704:49–57

    PubMed  CAS  Google Scholar 

  9. Mackay F, Ambrose C (2003) The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev 14:311–324

    Article  PubMed  CAS  Google Scholar 

  10. Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10:580–583

    Article  PubMed  CAS  Google Scholar 

  11. Wajant H, Gerspach J, Pfizenmaier K (2005) Tumor therapeutics by design: targeting and activation of death receptors. Cytokine Growth Factor Rev 16:55–76

    Article  PubMed  CAS  Google Scholar 

  12. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14:337–348

    Article  PubMed  CAS  Google Scholar 

  13. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  PubMed  CAS  Google Scholar 

  14. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    Article  PubMed  CAS  Google Scholar 

  15. Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B, Hillan K, Totpal K, DeForge L, Schow P, Hooley J, Sherwood S, Pai R, Leung S, Khan L, Gliniak B, Bussiere J, Smith CA, Strom SS, Kelley S, Fox JA, Thomas D, Ashkenazi A (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7:383–385

    Article  PubMed  CAS  Google Scholar 

  16. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, Strom SC (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6:564–567

    Article  PubMed  CAS  Google Scholar 

  17. Leverkus M, Sprick MR, Wachter T, Mengling T, Baumann B, Serfling E, Brocker EB, Goebeler M, Neumann M, Walczak H (2003) Proteasome inhibition results in TRAIL sensitization of primary keratinocytes by removing the resistance-mediating block of effector caspase maturation. Mol Cell Biol 23:777–790

    Article  PubMed  CAS  Google Scholar 

  18. Samel D, Muller D, Gerspach J, Assohou-Luty C, Sass G, Tiegs G, Pfizenmaier K, Wajant H (2003) Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted activation. J Biol Chem 278:32077–32082

    Article  PubMed  CAS  Google Scholar 

  19. Wuest T, Gerlach E, Banerjee D, Gerspach J, Moosmayer D, Pfizenmaier K (2002) TNF-selectokine: a novel prodrug generated for tumor targeting and site-specific activation of tumor necrosis factor. Oncogene 21:4257–4265

    Article  PubMed  CAS  Google Scholar 

  20. Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LF, Helfrich W (2005) Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J Biol Chem 280:10025–10033

    Article  PubMed  CAS  Google Scholar 

  21. Bremer E, Kuijlen J, Samplonius D, Walczak H, de Leij L, Helfrich W (2004) Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int J Cancer 109:281–290

    Article  PubMed  CAS  Google Scholar 

  22. Bauer S, Adrian N, Williamson B, Panousis C, Fadle N, Smerd J, Fettah I, Scott AM, Pfreundschuh M, Renner C (2004) Targeted bioactivity of membrane-anchored TNF by an antibody-derived TNF fusion protein. J Immunol 172:3930–3939

    PubMed  CAS  Google Scholar 

  23. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  PubMed  CAS  Google Scholar 

  24. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328

    Article  PubMed  CAS  Google Scholar 

  25. Siegmund D, Wicovsky A, Schmitz I, Schulze-Osthoff K, Kreuz S, Leverkus M, Dittrich-Breiholz O, Kracht M, Wajant H (2005) Death receptor-induced signaling pathways are differentially regulated by gamma interferon upstream of caspase 8 processing. Mol Cell Biol 25:6363–6379

    Article  PubMed  CAS  Google Scholar 

  26. Voorzanger-Rousselot N, Blay JY (2004) Coexpression of CD40 and CD40L on B lymphoma and carcinoma cells: an autocrine anti-apoptotic role. Leuk Lymphoma 45:1239–1245

    Article  PubMed  CAS  Google Scholar 

  27. Pham LV, Tamayo AT, Yoshimura LC, Lo P, Terry N, Reid PS, Ford RJ (2002) A CD40 signalosome anchored in lipid rafts leads to constitutive activation of NF-kappaB and autonomous cell growth in B cell lymphomas. Immunity 16:37–50

    Article  PubMed  CAS  Google Scholar 

  28. Storz M, Zepter K, Kamarashev J, Dummer R, Burg G, Haffner AC (2001) Coexpression of CD40 and CD40 ligand in cutaneous T-cell lymphoma (mycosis fungoides). Cancer Res 61:452–454

    PubMed  CAS  Google Scholar 

  29. Rudner J, Jendrossek V, Lauber K, Daniel PT, Wesselborg S, Belka C (2005) Type I and type II reactions in TRAIL-induced apoptosis—results from dose–response studies. Oncogene 24:130–140

    Article  PubMed  CAS  Google Scholar 

  30. Martin DA, Zheng L, Siegel RM, Huang B, Fisher GH, Wang J, Jackson CE, Puck JM, Dale J, Straus SE, Peter ME, Krammer PH, Fesik S, Lenardo MJ (1999) Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc Natl Acad Sci USA 96:4552–4557

    Article  PubMed  CAS  Google Scholar 

  31. Hilliard B, Wilmen A, Seidel C, Liu TS, Goke R, Chen Y (2001) Roles of TNF-related apoptosis-inducing ligand in experimental autoimmune encephalomyelitis. J Immunol 166:1314–1319

    PubMed  CAS  Google Scholar 

  32. Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA, Peschon J, Chen YH (2003) Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL−/− mice. Nat Immunol 4:255–260

    Article  PubMed  CAS  Google Scholar 

  33. Schneider P, Thome M, Burns K, Bodmer JL, Hofmann K, Kataoka T, Holler N, Tschopp J (1997) TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 7:831–836

    Article  PubMed  CAS  Google Scholar 

  34. Bergmeyer HU (ed) (1984) Methods of enzymatic analysis, vol. 3, 3rd edn. Wiley Verlag Chemie, Weinheim, pp 416–456

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 487, project B7), Deutsche Krebshilfe (grant 10-1751-Wa 3), Wilhelm–Sander–Stiftung (grant 2003.120.1), and Interdisziplinären Zentrum für Klinische Forschung Wuerzburg (project B-32). We were further supported by APOXIS S.A. (Epalinges, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Wajant.

Additional information

Klaus Pfizenmaier and Harald Wajant contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assohou-Luty, C., Gerspach, J., Siegmund, D. et al. A CD40–CD95L fusion protein interferes with CD40L-induced prosurvival signaling and allows membrane CD40L-restricted activation of CD95. J Mol Med 84, 785–797 (2006). https://doi.org/10.1007/s00109-006-0073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0073-1

Keywords

Navigation