Skip to main content

Advertisement

Log in

Molecular dissection reveals decreased activity and not dominant negative effect in human OTX2 mutants

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The paired-type homeodomain transcription factor Otx2 is essential for forebrain and eye development. Severe ocular malformations in humans have recently been associated with heterozygous OTX2 mutations. To document the molecular defects in human mutants, Otx2 structural characterization was carried out. A collection of deletion and point mutants was created to perform transactivation, DNA binding, and subcellular localization analyses. Transactivation was ascribed to both N- and C-termini of the protein, and DNA binding to the minimal homeodomain, where critical amino acid residues were identified. Acute nuclear localization appeared controlled by a nuclear localization sequence located within the homeodomain which acts in conjunction with a novel nuclear retention domain that we unraveled located in the central part of the protein. This region, which is poorly conserved among Otx proteins, was also endowed with dominant negative activity suggesting that it might confer unique properties to Otx2. Molecular diagnostic of human mutant OTX2 proteins discriminates hypomorphic and loss of function mutations from other mutations that may not be relevant to ocular pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NLS:

Nuclear localization sequence

aa:

Amino acid

bts:

Bicoid target site

References

  1. Muller P, Yanze N, Schmid V, Spring J (1999) The homeobox gene Otx of the jellyfish Podocoryne carnea: role of a head gene in striated muscle and evolution. Dev Biol 216:582–594

    Article  PubMed  CAS  Google Scholar 

  2. Galliot B, de Vargas C, Miller D (1999) Evolution of homeobox genes: Q50 Paired-like genes founded the Paired class. Dev Genes Evol 209:186–197

    Article  PubMed  CAS  Google Scholar 

  3. Germot A, Lecointre G, Plouhinec JL, Le Mentec C, Girardot F, Mazan S (2001) Structural evolution of Otx genes in craniates. Mol Biol Evol 18:1668–1678

    PubMed  CAS  Google Scholar 

  4. Rhinn M, Dierich A, Le Meur M, Ang S (1999) Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 126:4295–4304

    PubMed  CAS  Google Scholar 

  5. Kimura C, Yoshinaga K, Tian E, Suzuki M, Aizawa S, Matsuo I (2000) Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev Biol 225:304–321

    Article  PubMed  CAS  Google Scholar 

  6. Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130:5155–5167

    Article  PubMed  CAS  Google Scholar 

  7. Martinez-Morales JR, Signore M, Acampora D, Simeone A, Bovolenta P (2001) Otx genes are required for tissue specification in the developing eye. Development 128:2019–2030

    PubMed  CAS  Google Scholar 

  8. Nishida A, Furukawa A, Koike C et al (2003) Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 6:1255–1263

    Article  PubMed  CAS  Google Scholar 

  9. Fossat N, Courtois V, Chatelain G, Brun G, Lamonerie T (2005) Alternative usage of Otx2 promoters during mouse development. Dev Dyn 233:154–160

    Article  PubMed  CAS  Google Scholar 

  10. Courtois V, Chatelain G, Han ZY, Le Novere N, Brun G, Lamonerie T (2003) New Otx2 mRNA isoforms expressed in the mouse brain. J Neurochem 84:840–853

    Article  PubMed  CAS  Google Scholar 

  11. Kurokawa D, Takasaki N, Kiyonari H et al (2004) Regulation of Otx2 expression and its functions in mouse epiblast and anterior neuroectoderm. Development 131:3307–3317

    Article  PubMed  CAS  Google Scholar 

  12. Kurokawa D, Kiyonari H, Nakayama R, Kimura-Yoshida C, Matsuo I, Aizawa S (2004) Regulation of Otx2 expression and its functions in mouse forebrain and midbrain. Development 131:3319–3331

    Article  PubMed  CAS  Google Scholar 

  13. Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S (1995) Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 9:2646–2658

    Article  PubMed  CAS  Google Scholar 

  14. Ragge NK, Brown AG, Poloschek CM et al (2005) Heterozygous mutations of OTX2 cause severe ocular malformations. Am J Hum Genet 76

  15. Zernicka-Goetz M, Pines J, Ryan K et al (1996) An indelible lineage marker for Xenopus using a mutated green fluorescent protein. Development 122:3719–3724

    PubMed  CAS  Google Scholar 

  16. Hiriart E, Farjot G, Gruffat H, Nguyen MV, Sergeant A, Manet E (2003) A novel nuclear export signal and a REF interaction domain both promote mRNA export by the Epstein–Barr virus EB2 protein. J Biol Chem 278:335–342

    Article  PubMed  CAS  Google Scholar 

  17. Fong SL, Fong WB (1999) Elements regulating the transcription of human interstitial retinoid-binding protein (IRBP) gene in cultured retinoblastoma cells. Curr Eye Res 18:283–291

    Article  PubMed  CAS  Google Scholar 

  18. Chelsky D, Ralph R, Jonak G (1989) Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol Cell Biol 9:2487–2492

    PubMed  CAS  Google Scholar 

  19. Pollock R, Treisman R (1990) A sensitive method for the determination of protein–DNA binding specificities. Nucleic Acids Res 18:6197–6204

    Article  PubMed  CAS  Google Scholar 

  20. Freund CL, Gregory-Evans CY, Furukawa T et al (1997) Cone–rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91:543–553

    Article  PubMed  CAS  Google Scholar 

  21. Chen S, Wang QL, Nie Z et al (1997) Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19:1017–1030

    Article  PubMed  CAS  Google Scholar 

  22. Fraenkel E, Pabo CO (1998) Comparison of X-ray and NMR structures for the Antennapedia homeodomain–DNA complex. Nat Struct Biol 5:692–697

    PubMed  CAS  Google Scholar 

  23. Hanes SD, Riddihough G, Ish-Horowicz D, Brent R (1994) Specific DNA recognition and intersite spacing are critical for action of the bicoid morphogen. Mol Cell Biol 14:3364–3375

    PubMed  CAS  Google Scholar 

  24. Briata P, Ilengo C, Bobola N, Corte G (1999) Binding properties of the human homeodomain protein OTX2 to a DNA target sequence. FEBS Lett 445:160–164

    Article  PubMed  CAS  Google Scholar 

  25. Simeone A, Acampora D, Mallamaci A et al (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12:2735–2747

    PubMed  CAS  Google Scholar 

  26. Pratt G, Hough R, Rechsteiner M (1989) Proteolysis in heat-stressed HeLa cells. Stabilization of ubiquitin correlates with the loss of proline endopeptidase. J Biol Chem 264:12526–12532

    PubMed  CAS  Google Scholar 

  27. Mallamaci A, Di Blas E, Briata P, Boncinelli E, Corte G (1996) OTX2 homeoprotein in the developing central nervous system and migratory cells of the olfactory area. Mech Dev 58:165–178

    Article  PubMed  CAS  Google Scholar 

  28. Nothias F, Fishell G, Ruiz i Altaba A (1998) Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex. Curr Biol 8:459–462

    Article  PubMed  CAS  Google Scholar 

  29. Hodel MR, Corbett AH, Hodel AE (2001) Dissection of a nuclear localization signal. J Biol Chem 276:1317–1325

    Article  PubMed  CAS  Google Scholar 

  30. Chau KY, Chen S, Zack DJ, Ono SJ (2000) Functional domains of the cone–rod homeobox (CRX) transcription factor. J Biol Chem 275:37264–37270

    Article  PubMed  CAS  Google Scholar 

  31. Chaney BA, Clark-Baldwin K, Dave V, Ma J, Rance M (2005) Solution structure of the K50 class homeodomain PITX2 bound to DNA and implications for mutations that cause Rieger syndrome. Biochemistry 44:7497–7511

    Article  PubMed  CAS  Google Scholar 

  32. Martinez-Morales JR, Dolez V, Rodrigo I et al (2003) OTX2 activates the molecular network underlying retina pigment epithelium differentiation. J Biol Chem 278:21721–21731

    Article  PubMed  CAS  Google Scholar 

  33. Montalta-He H, Leemans R, Loop T et al (2002) Evolutionary conservation of otd/Otx2 transcription factor action: a genome-wide microarray analysis in Drosophila. Genome Biol 3:RESEARCH0015

    Google Scholar 

  34. Takeda K, Yokoyama S, Yasumoto K et al (2003) OTX2 regulates expression of DOPAchrome tautomerase in human retinal pigment epithelium. Biochem Biophys Res Commun 300:908–914

    Article  PubMed  CAS  Google Scholar 

  35. Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C (1993) Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 7:2120–2134

    Article  PubMed  CAS  Google Scholar 

  36. Wilson DS, Sheng G, Jun S, Desplan C (1996) Conservation and diversification in homeodomain–DNA interactions: a comparative genetic analysis. Proc Natl Acad Sci U S A 93:6886–6891

    Article  PubMed  CAS  Google Scholar 

  37. Nakano T, Murata T, Matsuo I, Aizawa S (2000) OTX2 directly interacts with LIM1 and HNF-3beta. Biochem Biophys Res Commun 267:64–70

    Article  PubMed  CAS  Google Scholar 

  38. Fei Y, Hughes TE (2000) Nuclear trafficking of photoreceptor protein crx: the targeting sequence and pathologic implications. Invest Ophthalmol Vis Sci 41:2849–2856

    PubMed  CAS  Google Scholar 

  39. Zhang YA, Okada A, Lew CH, McConnell SK (2002) Regulated nuclear trafficking of the homeodomain protein otx1 in cortical neurons. Mol Cell Neurosci 19:430–446

    Article  PubMed  CAS  Google Scholar 

  40. Howe KJ (2002) RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim Biophys Acta 1577:308–324

    PubMed  CAS  Google Scholar 

  41. Nicoll JB, Gwinn BL, Iwig JS, Garcia PP, Bunn CF, Allison LA (2003) Compartment-specific phosphorylation of rat thyroid hormone receptor alpha1 regulates nuclear localization and retention. Mol Cell Endocrinol 205:65–77

    Article  PubMed  CAS  Google Scholar 

  42. Friedman JS, Khanna H, Swain PK et al (2004) The minimal transactivation domain of the basic motif-leucine zipper transcription factor NRL interacts with TATA-binding protein. J Biol Chem 279:47233–47241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jérôme Lacroix who contributed to this work as an undergraduate student, Evelyne Manet and Alain Sergeant for helpful discussions, and Charlie Scutt for improving the manuscript. NF is a recipient of a fellowship of the French Ministry of Research and Education. This work was supported by grants from the CNRS, the Retina France association, and the Comité du Rhône of the Ligue Nationale contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lamonerie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatelain, G., Fossat, N., Brun, G. et al. Molecular dissection reveals decreased activity and not dominant negative effect in human OTX2 mutants. J Mol Med 84, 604–615 (2006). https://doi.org/10.1007/s00109-006-0048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0048-2

Keywords

Navigation