Skip to main content

Advertisement

Log in

T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 11 August 2011

Abstract

Acute or chronic glaucoma is often associated with an increase in intraocular pressure (IOP). In many patients, however, therapeutic pressure reduction does not halt disease progression. Neuroprotection has been proposed as a complementary therapeutic approach. We previously demonstrated effective T-cell-based neuroprotection in experimental animals vaccinated with the synthetic copolymer glatiramer acetate (copolymer-1, Cop-1), a weak agonist of self-antigens. This study was undertaken to test different routes and modes of vaccination with Cop-1 as treatment modalities for protection against retinal ganglion cell (RGC) death caused by chronic elevation of IOP in rats, and to determine whether anatomical neuroprotection is accompanied by functional neuroprotection. In a chronic model of unilaterally high IOP, Cop-1 vaccination, with or without an adjuvant, protected rats against IOP-induced loss of RGCs by eliciting a systemic T-cell-mediated response capable of cross-reacting with self-antigens residing in the eye. In rats deprived of T cells, Cop-1 (unlike treatment with α2-adrenoreceptor agonists) was not protective of RGCs, substantiating the contention that its beneficial effect is not conferred directly but is T-cell-mediated. Pattern electroretinography provided evidence of functional protection. Thus, vaccination with adjuvant-free Cop-1 can protect RGCs from the consequences of elevated IOP in rats. This protection is manifested both morphologically and functionally. These findings can be readily implemented for the development of a therapeutic vaccination to arrest the progression of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwartz M, Belkin M, Yoles E, Solomon A (1996) Potential treatment modalities for glaucomatous neuropathy: neuroprotection and neuroregeneration. J Glaucoma 5:427–432

    PubMed  Google Scholar 

  2. Kaufman PL, Gabelt B, Tian B, Liu X (1999) Advances in glaucoma diagnosis and therapy for the next millennium: new drugs for trabecular and uveoscleral outflow. Semin Ophthalmol 14:130–143

    PubMed  Google Scholar 

  3. Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114:299–305

    PubMed  Google Scholar 

  4. Weinreb RN (2001) Lowering intraocular pressure to minimize glaucoma damage. J Glaucoma 10(5 Suppl 1):S76–S77

    Article  PubMed  Google Scholar 

  5. Yoles E, Schwartz M (1998) Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp Neurol 153:1–7

    Article  PubMed  Google Scholar 

  6. Chidlow G, Osborne NN (2003) Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Res 963:298–306

    Article  PubMed  Google Scholar 

  7. Hauben E, Butovsky O, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Leibowitz-Amit R, Pevsner E, Akselrod S, Neeman M, Cohen IR, Schwartz M (2000) Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J Neurosci 20:6421–6430

    PubMed  Google Scholar 

  8. Kipnis J, Yoles E, Schori H, Hauben E, Shaked I, Schwartz M (2001) Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci 21:4564–4571

    PubMed  Google Scholar 

  9. Mizrahi T, Hauben E, Schwartz M (2002) The tissue-specific self-pathogen is the protective self-antigen: the case of uveitis. J Immunol 169:5971–5977

    PubMed  Google Scholar 

  10. Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler LA, Schwartz M (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A 98:3398–3403

    Article  PubMed  Google Scholar 

  11. Yoles E, Hauben E, Palgi O, Agranov E, Gothilf A, Cohen A, Kuchroo V, Cohen IR, Weiner H, Schwartz M (2001) Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 21:3740–3748

    PubMed  Google Scholar 

  12. Muhallab S, Lundberg C, Gielen AW, Lidman O, Svenningsson A, Piehl F, Olsson T (2002) Differential expression of neurotrophic factors and inflammatory cytokines by myelin basic protein-specific and other recruited T cells infiltrating the central nervous system during experimental autoimmune encephalomyelitis. Scand J Immunol 55:264–273

    Article  PubMed  Google Scholar 

  13. Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Linda H, van Der Meide PH, Cullheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291

    PubMed  Google Scholar 

  14. Bakalash S, Kessler A, Mizrahi T, Nussenblatt R, Schwartz M (2003) Antigenic specificity of immunoprotective therapeutic vaccination for glaucoma. Investig Ophthalmol Vis Sci 44:3374–3381

    Article  Google Scholar 

  15. Butovsky O, Hauben E, Schwartz M (2001) Morphological aspects of spinal cord autoimmune neuroprotection: colocalization of T cells with B7-2 (CD86) and prevention of cyst formation. FASEB J 15:1065–1067

    PubMed  Google Scholar 

  16. Bakalash S, Kipnis J, Yoles E, Schwartz M (2002) Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Investig Ophthalmol Vis Sci 43:2648–2653

    Google Scholar 

  17. Fisher J, Levkovitch-Verbin H, Schori H, Yoles E, Butovsky O, Kaye JF, Ben-Nun A, Schwartz M (2001) Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies. J Neurosci 21:136–142

    PubMed  Google Scholar 

  18. Hauben E, Agranov E, Gothilf A, Nevo U, Cohen A, Smirnov I, Steinman L, Schwartz M (2001) Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J Clin Invest 108:591–599

    Article  PubMed  Google Scholar 

  19. Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M (2002) Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A 99:15620–15625

    Article  PubMed  Google Scholar 

  20. Shaked I, Porat Z, Gersner R, Kipnis J, Schwartz M (2004) Early activation of microglia as antigen-presenting cells correlates with T cell-mediated protection and repair of the injured central nervous system. J Neuroimmunol 146:84–93

    Article  PubMed  Google Scholar 

  21. Kipnis J, Schwartz M (2002) Dual action of glatiramer acetate (Cop-1) as a treatment for autoimmune diseases and a vaccine for protective autoimmunity after CNS injury. Trends Mol Med 8:319–323

    Article  PubMed  Google Scholar 

  22. Hafler DA (2002) Degeneracy, as opposed to specificity, in immunotherapy. J Clin Invest 109:581–584

    Article  PubMed  Google Scholar 

  23. Angelov DN, Waibel S, Guntinas-Lichius O, Lenzen M, Neiss WF, Tomov TL, Yoles E, Kipnis J, Schori H, Reuter A, Ludolph A, Schwartz M (2003) Therapeutic vaccine for acute and chronic motor neuron diseases: implications for ALS. Proc Natl Acad Sci U S A 100:4790–4795

    Article  PubMed  Google Scholar 

  24. Benner EJ, Mosley RL, Destache CJ, Lewis TB, Jackson-Lewis V, Gorantla S, Nemachek C, Green SR, Przedborski S, Gendelman HE (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:9435–9440

    Article  PubMed  Google Scholar 

  25. Jia L, Cepurna WO, Johnson EC, Morrison JC (2000) Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Investig Ophthalmol Vis Sci 41:1380–1385

    Google Scholar 

  26. Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M, Cohen IR, Schwartz M (2000) T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 97:7446–7451

    Article  PubMed  Google Scholar 

  27. Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vision Res 25:21–31

    Article  PubMed  Google Scholar 

  28. Hughes A (1977) The refractive state of the rat eye. Vision Res 17:927–939

    Article  PubMed  Google Scholar 

  29. Onofrj M, Harnois C, Bodis-Wollner I (1985) The hemispheric distribution of the transient rat VEP: a comparison of flash and pattern stimulation. Exp Brain Res 59:427–433

    Article  PubMed  Google Scholar 

  30. Pizzorusso T, Fagiolini M, Porciatti V, Maffei L (1997) Temporal aspects of contrast visual evoked potentials in the pigmented rat: effect of dark rearing. Vision Res 37:389–395

    Article  PubMed  Google Scholar 

  31. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49–55

    Article  PubMed  Google Scholar 

  32. Corradin SB, Mauel J, Donini SD, Quattrocchi E, Ricciardi-Castagnoli P (1993) Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia 7:255–262

    Article  PubMed  Google Scholar 

  33. Shaked I, Tchorsh D, Gersner R, Meiri G, Mordechay S, Xiao X, Hart RP, Schwartz M (2005) Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 92:997–1009

    Article  PubMed  Google Scholar 

  34. Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    PubMed  Google Scholar 

  35. Kipnis J, Nevo U, Panikashvili D, Alexanderovich A, Yoles E, Akselrod S, Shohami E, Schwartz M (2003) Therapeutic vaccination for closed head injury. J Neurotrauma 20:559–569

    Article  PubMed  Google Scholar 

  36. Moalem G, Monsonego A, Shani Y, Cohen IR, Schwartz M (1999) Differential T cell response in central and peripheral nerve injury: connection with immune privilege. FASEB J 13:1207–1217

    PubMed  Google Scholar 

  37. Alessandri B, Bullock R (1998) Glutamate and its receptors in the pathophysiology of brain and spinal cord injuries. Prog Brain Res 116:303–330

    PubMed  Google Scholar 

  38. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  PubMed  Google Scholar 

  39. Berardi N, Domenici L, Gravina A, Maffei L (1990) Pattern ERG in rats following section of the optic nerve. Exp Brain Res 79:539–546

    Article  PubMed  Google Scholar 

  40. Domenici L, Gravina A, Berardi N, Maffei L (1991) Different effects of intracranial and intraorbital section of the optic nerve on the functional responses of rat retinal ganglion cells. Exp Brain Res 86:579–584

    Article  PubMed  Google Scholar 

  41. Hecht KA, Straus H, Denny M, Taylor F, Garrett M (1997) Glaucoma. American Academy of Ophthalmology, San Francisco, p 155

    Google Scholar 

  42. AsgTAGIS (1994) The Advanced Glaucoma Intervention Study (AGIS): 1. Study design and methods and baseline characteristics of study patients. Control Clin Trials 15:299–325

    Google Scholar 

  43. AsgTAGIS (1994) The Advanced Glaucoma Intervention Study (AGIS): 2. Visual field test scoring and reliability. Ophthalmology 101:1445–1455

    Google Scholar 

  44. AsgTAGIS (1998) The Advanced Glaucoma Intervention Study (AGIS): 3. Baseline characteristics of black and white patients. Ophthalmology 105:1137–1145

    Google Scholar 

  45. AsgTAGIS (2000) The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 130:429–440

    Google Scholar 

  46. Schwartz M, Yoles E (2000) Neuroprotection: a new treatment modality for glaucoma? Curr Opin Ophthalmol 11:107–111

    Article  PubMed  Google Scholar 

  47. Schwartz M, Shaked I, Fisher J, Mizrahi T, Schori H (2003) Protective autoimmunity against the enemy within: fighting glutamate toxicity. Trends Neurosci 26:297–302

    Article  PubMed  Google Scholar 

  48. Hare WA, WoldeMussie E, Weinreb RN, Ton H, Ruiz G, Wijono M, Feldmann B, Zangwill L, Wheeler L (2004) Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: Structural measures. Investig Ophthalmol Vis Sci 45:2640–2651

    Article  Google Scholar 

  49. Neufeld AH, Kawai S, Das S, Vora S, Gachie E, Connor JR, Manning PT (2002) Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp Eye Res 75:521–528

    Article  PubMed  Google Scholar 

  50. Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  PubMed  Google Scholar 

  51. Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15:331–345

    Article  PubMed  Google Scholar 

  52. Ziemssen T, Kumpfel T, Klinkert WE, Neuhaus O, Hohlfeld R (2002) Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 125:2381–2391

    Article  PubMed  Google Scholar 

  53. Fiorentini A, Maffei L, Pirchio M, Spinelli D, Porciatti V (1981) The ERG in response to alternating gratings in patients with diseases of the peripheral visual pathway. Investig Ophthalmol Vis Sci 21:490–493

    Google Scholar 

  54. Korth M (1997) The value of electrophysiological testing in glaucomatous diseases. J Glaucoma 6:331–343

    PubMed  Google Scholar 

  55. Marx MS, Podos SM, Bodis-Wollner I, Howard-Williams JR, Siegel MJ, Teitelbaum CS, Maclin EL, Severin C (1986) Flash and pattern electroretinograms in normal and laser-induced glaucomatous primate eyes. Investig Ophthalmol Vis Sci 27:378–386

    Google Scholar 

  56. Marx MS, Podos SM, Bodis-Wollner I, Lee PY, Wang RF, Severin C (1988) Signs of early damage in glaucomatous monkey eyes: low spatial frequency losses in the pattern ERG and VEP. Exp Eye Res 46:173–184

    PubMed  Google Scholar 

  57. Ofri R, Dawson WW, Foli K, Gelatt KN (1993) Chronic ocular hypertension alters local retinal responsiveness. Br J Ophthalmol 77:502–508

    PubMed  Google Scholar 

  58. Ofri R, Dawson WW, Foli K, Gelatt KN (1993) Primary open-angle glaucoma alters retinal recovery from a thiobarbiturate: spatial frequency dependence. Exp Eye Res 56:481–488

    Article  PubMed  Google Scholar 

  59. Swindale NV, Fendick MG, Drance SM, Graham SL, Hnik P (1996) Contrast sensitivity for flickering and static letters and visual acuity at isoluminance in glaucoma. J Glaucoma 5:156–169

    PubMed  Google Scholar 

  60. Towle VL, Moskowitz A, Sokol S, Schwartz B (1983) The visual evoked potential in glaucoma and ocular hypertension: effects of check size, field size, and stimulation rate. Investig Ophthalmol Vis Sci 24:175–183

    Google Scholar 

  61. Bodis-Wollner I (1989) Electrophysiological and psychophysical testing of vision in glaucoma. Surv Ophthalmol 33(Suppl):301–307

    PubMed  Google Scholar 

  62. Brooks DE, Komaromy AM, Kallberg ME (1999) Comparative optic nerve physiology: implications for glaucoma, neuroprotection, and neuroregeneration. Vet Ophthalmol 2:13–25

    Article  PubMed  Google Scholar 

  63. Trible JR, Anderson DR (1997) Factors associated with intraocular pressure-induced acute visual field depression. Arch Ophthalmol 115:1523–1527

    PubMed  Google Scholar 

  64. Anderson DR, Cynader MS (1997) Glaucomatous optic nerve cupping as an optic neuropathy. Clin Neurosci 4:274–278

    PubMed  Google Scholar 

  65. Guo L, Fitzke FW, Cordeiro MF (2004) Selective large-cell retinal ganglion cell apoptosis in early glaucomatous disease models. Investig Ophthalmol Vis Sci ARVO Abstr 2153

  66. Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, Jia L, Barber S, Cioffi GA (2004) Selective ganglion cell functional loss in rats with experimental glaucoma. Investig Ophthalmol Vis Sci 45:1854–1862

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Smith for editing the manuscript and A. Shapira for animal maintenance. M. Schwartz holds the Maurice and Ilse Katz Professorial Chair in Neuroimmunology. This work was supported in part by Teva Pharmaceutical Industries and in part by grants awarded to M. Schwartz by The Glaucoma Research Foundation and The Alan Brown Foundation for Spinal Cord Injury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Schwartz.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00109-011-0789-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakalash, S., Shlomo, G.B., Aloni, E. et al. T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J Mol Med 83, 904–916 (2005). https://doi.org/10.1007/s00109-005-0689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0689-6

Keywords

Navigation