Skip to main content

Advertisement

Log in

Low concentrations of aggregated β-amyloid induce neurite formation via the neurotrophin receptor p75

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Aggregated β-amyloid (Aβ) binds to the neurotrophin receptor p75 and induces signaling. We examined this signaling process in different cell lines which express p75 either naturally (Schwannoma RN22 cells) or which are stably transfected with wild-type p75 (MDCKwt and PCNA cells) or with a truncated form of p75 comprising only extracellular and transmembrane domains (MDCKtm cells). While Aβ in higher concentrations (10–100 μM) is known to cause apoptosis via p75, our experiments focused on the effects of low concentrations of Aβ (25 nM) which may occur in early stages of Alzheimer disease. Application of Aβ caused tyrosine phosphorylation of wild-type p75 and induced the Ras–ERK pathway as has been reported for nerve growth factor (NGF). Since Ras activation and ERK phosphorylation (via MEK) could not be observed in MDCKtm cells and since they were clearly reduced in cells transfected with a p75 antisense construct, these effects should have been mediated by p75. Aβ also induced Ras and ERK activation in cerebellar neurons of 2-day-old rats which express p75 at that developmental stage but not TrkA; other Trk receptors were inhibited by K252a. In these neurons, Aβ led to quick formation, branching and elongation of processes. But while NGF distinctly promoted neurite branching and elongation, Aβ was less effective in neurite elongation and counts of small processes and of growth cones remained clearly elevated after 24-h stimulation; these peculiarities might be linked to aberrant neuronal connections reported for an animal model of Alzheimer disease. Essentially, the observed effects were mediated by interaction of Aβ and p75.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yankner BJ (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16:921–932

    CAS  PubMed  Google Scholar 

  2. Drouet B, Pincon-Raymond M, Chambaz J, Pillot T (2000) Molecular basis of Alzheimer’s disease. Cell Mol Life Sci 57:705–715

    CAS  PubMed  Google Scholar 

  3. Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid β-protein. J Alzheimer’s Dis 3:75–80

    CAS  Google Scholar 

  4. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    CAS  PubMed  Google Scholar 

  5. Butterfield DA (2003) Amyloid β-peptide. Curr Med Chem 10:2651–2659

    CAS  PubMed  Google Scholar 

  6. Barger SW (2004) An unconventional hypothesis of oxidation in Alzheimer’s disease: intersections with excitotoxicity. Front Biosci 9:3286–3295

    CAS  PubMed  Google Scholar 

  7. Selkoe DJ (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140:627–638

    CAS  PubMed  Google Scholar 

  8. Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE, Gilchrest BA (1997) Binding of β-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. J Clin Invest 100:2333–2340

    CAS  PubMed  Google Scholar 

  9. Yaar M, Zhai S, Fine RE, Eisenhauer PB, Arble BL, Stewart KB, Gilchrest BA (2002) Amyloid β binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. J Biol Chem 277:7720–7725

    CAS  PubMed  Google Scholar 

  10. Kuner P, Schubenel R, Hertel C (1998) β-Amyloid binds to p75NTR and activates NFκB in human neuroblastoma cells. J Neurosci Res 54:798–804

    CAS  PubMed  Google Scholar 

  11. Perini G, Della-Bianca V, Politi V, Della Valle G, Dal-Pra I, Rossi F, Armato U (2002) Role of p75 neurotrophin receptor in the neurotoxicity by β-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med 195:907–918

    CAS  PubMed  Google Scholar 

  12. Huber LJ, Chao MV (1995) A potential interaction of p75 and trkA NGF receptors revealed by affinity crosslinking and immunoprecipitation. J Neurosci Res 40:557–563

    CAS  PubMed  Google Scholar 

  13. Hantzopoulos PA, Suri C, Glass DJ, Goldfarb MP, Yancopoulos GD (1994) The low affinity NGF receptor, p75, can collaborate with each of the Trks to potentiate functional responses to the neurotrophins. Neuron 13:187–201

    CAS  PubMed  Google Scholar 

  14. Maliartchouk S, Saragovi HU (1997) Optimal nerve growth factor trophic signals mediated by synergy of TrkA and p75 receptor-specific ligands. J Neurosci 17:6031–6037

    CAS  PubMed  Google Scholar 

  15. Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18:616–622

    CAS  PubMed  Google Scholar 

  16. Dechant G (2001) Molecular interactions between neurotrophin receptors. Cell Tissue Res 305:229–238

    CAS  PubMed  Google Scholar 

  17. Frade JM, Bovolenta P, Martinez-Morales JR, Arribas A, Barbas JA, Rodriguez-Tebar A (1997) Control of early cell death by BDNF in the chick retina. Development 124:3313–3320

    CAS  PubMed  Google Scholar 

  18. Teng KK, Hempstead BL (2004) Neurotrophins and their receptors: signaling trios in complex biological systems. Cell Mol Life Sci 61:35–48

    CAS  PubMed  Google Scholar 

  19. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    CAS  PubMed  Google Scholar 

  20. Susen K, Heumann R, Blöchl A (1999) Nerve growth factor stimulates MAPK via the low affinity receptor p75(LNTR). FEBS Lett 463:231–234

    CAS  PubMed  Google Scholar 

  21. Blöchl A, Blumenstein L, Ahmadian RM (2004) Inactivation and activation of Ras by the neurotrophin receptor p75. Eur J Neurosci 20:2321–2335

    PubMed  Google Scholar 

  22. Rabizadeh S, Bitler CM, Butcher LL, Bredesen DE (1994) Expression of the low-affinity nerve growth factor receptor enhances β-amyloid peptide toxicity. Proc Natl Acad Sci U S A 91:10703–10706

    CAS  PubMed  Google Scholar 

  23. Tsukamoto E, Hashimoto Y, Kanekura K, Niikura T, Aiso S, Nishimoto I (2003) Characterization of the toxic mechanism triggered by Alzheimer’s amyloid-β peptides via p75 neurotrophin receptor in neuronal hybrid cells. J Neurosci Res 73:627–636

    CAS  PubMed  Google Scholar 

  24. Bhakar AL, Howell JL, Paul CE, Salehi AH, Becker EB, Said F, Bonni A, Barker PA (2003) Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of bad. J Neurosci 23:11373–11381

    CAS  PubMed  Google Scholar 

  25. McDonald DR, Bamberger ME, Combs CK, Landreth GE (1998) β-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J Neurosci 18:4451–4460

    CAS  PubMed  Google Scholar 

  26. Kuperstein F, Yavin E (2002) ERK activation and nuclear translocation in amyloid-β peptide- and iron-stressed neuronal cell cultures. Eur J Neurosci 16:44–54

    PubMed  Google Scholar 

  27. Pyo H, Jou I, Jung S, Hong S, Joe EH (1998) Mitogen-activated protein kinases activated by lipopolysaccharide and beta-amyloid in cultured rat microglia. NeuroReport 9:871–874

    CAS  PubMed  Google Scholar 

  28. Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW (2002) Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J Neurosci 22:3376–3385

    CAS  PubMed  Google Scholar 

  29. Haddad JJ (2004) Mitogen-activated protein kinases and the evolution of Alzheimer’s: a revolutionary neurogenetic axis for therapeutic intervention? Prog Neurobiol 73:359–377

    CAS  PubMed  Google Scholar 

  30. Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of β-amyloid and prion proteins. J Neurosci 19:928–939

    CAS  PubMed  Google Scholar 

  31. Combs CK, Karlo JC, Kao SC, Landreth GE (2001) β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21:1179–1188

    CAS  PubMed  Google Scholar 

  32. Rapoport M, Ferreira A (2000) PD98059 prevents neurite degeneration induced by fibrillar β-amyloid in mature hippocampal neurons. J Neurochem 74:125–133

    CAS  PubMed  Google Scholar 

  33. Koistinaho M, Koistinaho J (2002) Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40:175–183

    PubMed  Google Scholar 

  34. Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, Mattson MP, Flavell RA, Mulan M (2000) Microglial activation resulting from CD40–CD40L interaction after β-amyloid stimulation. Science 286:2352–2355

    Google Scholar 

  35. Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, Grundke-Iqbal I (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease. Brain Res Mol Brain Res 109:45–55

    CAS  PubMed  Google Scholar 

  36. Ekinci FJ, Malik KU, Shea TB (1999) Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to β-Amyloid. Map kinase mediates beta-amyloid-induced neurodegeneration. J Biol Chem 274:30322–30327

    CAS  PubMed  Google Scholar 

  37. Brewer GJ, Cotman CW (1989) Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res 494:65–74

    CAS  PubMed  Google Scholar 

  38. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273:12817–12826

    CAS  PubMed  Google Scholar 

  39. Harper JD, Wong SS, Lieber CM, Lansbury PTJ (1999) Assembly of Aβ amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease. Biochemistry 38:8972–8980

    CAS  PubMed  Google Scholar 

  40. de Rooij J, Bos JL (1997) Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14:623–625

    PubMed  Google Scholar 

  41. Sherman LS, Ratner N (2001) Immunocytochemical assay for Ras activity. Methods Enzymol 333:348–355

    CAS  PubMed  Google Scholar 

  42. Gentry JJ, Casaccia-Bonnefil P, Carter BD (2000) Nerve growth factor activation of nuclear factor κB through its p75 receptor is an anti-apoptotic signal in RN22 schwannoma cells. J Biol Chem 275:7558–7565

    CAS  PubMed  Google Scholar 

  43. Lad SP, Neet KE (2003) Activation of the mitogen-activated protein kinase pathway through p75NTR: a common mechanism for the neurotrophin family. J Neurosci Res 73:614–626

    CAS  PubMed  Google Scholar 

  44. Fan Z, Lu Y, Wu X, Mendelsohn J (1994) Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 269:27595–27602

    CAS  PubMed  Google Scholar 

  45. Chandler CE, Parsons LM, Hosang M, Shooter EM (1984) A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J Biol Chem 259:6882–6889

    CAS  PubMed  Google Scholar 

  46. Baldwin AN, Shooter EM (1995) Zone mapping of the binding domain of the rat low affinity nerve growth factor receptor by the introduction of novel N-glycosylation sites. J Biol Chem 270:4594–4602

    CAS  PubMed  Google Scholar 

  47. He XL, Garcia KC (2004) Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science 304:870–875

    CAS  PubMed  Google Scholar 

  48. Ryden M, Murray-Rust J, Glass D, Ilag LL, Trupp M, Yancopoulos GD, McDonald NQ, Ibanez CF (1995) Functional analysis of mutant neurotrophins deficient in low-affinity binding reveals a role for p75LNGFR in NT-4 signalling. EMBO J 14:1979–1990

    CAS  PubMed  Google Scholar 

  49. Robbins D, Zhen E, Owaki H, Vanderbilt C, Ebert D, Geppert T, Cobb M (1993) Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J Biol Chem 268:5097–5106

    CAS  PubMed  Google Scholar 

  50. Pagés G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouysségur J (1999) Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286:1374–1377

    PubMed  Google Scholar 

  51. Newton R, Cambridge L, Hart LA, Stevens DA, Lindsay MA, Barnes PJ (2000) The MAP kinase inhibitors, PD098059, UO126 and SB203580, inhibit IL-1β-dependent PGE2 release via mechanistically distinct processes. Br J Pharmacol 130:1353–1361

    CAS  PubMed  Google Scholar 

  52. Dang A, Frost JA, Cobb MH (1998) The MEK1 proline-rich insert is required for efficient activation of the mitogen-activated protein kinases ERK1 and ERK2 in mammalian cells. J Biol Chem 273:19909–19913

    CAS  PubMed  Google Scholar 

  53. Jelinek T, Catling A, Reuter C, Moodie S, Wolfman A, Weber M (1994) RAS and RAF-1 form a signalling complex with MEK-1 but not MEK-2. Mol Cell Biol 14:8212–8218

    CAS  PubMed  Google Scholar 

  54. Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ (1998) MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281:1668–1671

    CAS  PubMed  Google Scholar 

  55. Salama-Cohen P, Arévalo MA, Meier J, Grantyn R, Rodríguez-Tébar A (2005) NGF controls dendrite development in hippocampal neurons by binding to p75NTR and modulating the cellular targets of notch. Mol Biol Cell 16:339–347

    CAS  PubMed  Google Scholar 

  56. Blöchl A, Thoenen H (1995) Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur J Neurosci 7:1220–1228

    PubMed  Google Scholar 

  57. Blöchl A, Sirrenberg C (1996) Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. J Biol Chem 271:21100–21107

    PubMed  Google Scholar 

  58. Numakawa T, Nakayama H, Suzuki S, Kubo T, Nara F, Numakawa Y, Yokomaku D, Araki T, Ishimoto T, Ogura A, Taguchi T (2003) Nerve growth factor-induced glutamate release Is via p75 receptor, ceramide, and Ca2+ from ryanodine receptor in developing cerebellar neurons. J Biol Chem 278:41259–41269

    CAS  PubMed  Google Scholar 

  59. Borodinsky LN, Coso OA, Fiszman ML (2002) Contribution of Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase to neural activity-induced neurite outgrowth and survival of cerebellar granule cells. J Neurochem 80:1062–1070

    CAS  PubMed  Google Scholar 

  60. Wayman GA, Kaech S, Grant WF, Davare M, Impey S, Tokumitsu H, Nozaki N, Banker G, Soderling TR (2004) Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci 24:3786–3794

    CAS  PubMed  Google Scholar 

  61. Phinney AL, Deller T, Stalder M, Calhoun ME, Frotscher M, Sommer B, Staufenbiel M, Jucker M (1999) Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J Neurosci 19:8552–8559

    CAS  PubMed  Google Scholar 

  62. Phinney AL, Calhoun ME, Wolfer DP, Lipp HP, Zheng H, Jucker M (1999) No hippocampal neuron or synaptic bouton loss in learning-impaired aged beta-amyloid precursor protein-null mice. Neurosci 90:1207–1216

    CAS  Google Scholar 

  63. Heumann R, Goemans C, Bartsch D, Lingenhohl K, Waldmeier PC, Hengerer B, Allegrini PR, Schellander K, Wagner EF, Arendt T, Kamdem RH, Obst-Pernberg K, Narz F, Wahle P, Berns H (2000) Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. J Cell Biol 151:1537–1548

    CAS  PubMed  Google Scholar 

  64. Arendt T, Gartner U, Seeger G, Barmashenko G, Palm K, Mittmann T, Yan L, Hummeke M, Behrbohm J, Bruckner MK, Holzer M, Wahle P, Heumann R (2004) Neuronal activation of Ras regulates synaptic connectivity. Eur J Neurosci 19:2953–2966

    PubMed  Google Scholar 

  65. Holzer M, Gartner U, Klinz FJ, Narz F, Heumann R, Arendt T (2001) Activation of mitogen-activated protein kinase cascade and phosphorylation of cytoskeletal proteins after neurone-specific activation of p21ras. I. Mitogen-activated protein kinase cascade. Neuroscience 105:1031–1040

    CAS  PubMed  Google Scholar 

  66. Holzer M, Rodel L, Seeger G, Gartner U, Narz F, Janke C, Heumann R, Arendt T (2001) Activation of mitogen-activated protein kinase cascade and phosphorylation of cytoskeletal proteins after neurone-specific activation of p21ras. II. Cytoskeletal proteins and dendritic morphology. Neuroscience 105:1041–1054

    CAS  PubMed  Google Scholar 

  67. Gärtner U, Holzer M, Heumann R, Arendt T (1995) Induction of p21ras in Alzheimer pathology. NeuroReport 6:1441–1444

    PubMed  Google Scholar 

  68. Dechant G, Barde YA (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 5:1131–1136

    CAS  PubMed  Google Scholar 

  69. Verdier Y, Zarandi M, Penke B (2004) Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J Pept Sci 10:229–248

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. R. Heumann for his support of our work and Dr. C. Herrmann for providing the RBD-GST construct. K.S. was supported by Friedrich-Ebert-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blöchl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Susen, K., Blöchl, A. Low concentrations of aggregated β-amyloid induce neurite formation via the neurotrophin receptor p75. J Mol Med 83, 720–735 (2005). https://doi.org/10.1007/s00109-005-0671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0671-3

Keywords

Navigation