Skip to main content

Advertisement

Log in

Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Deregulation of the epigenome is now recognized as a major mechanism involved in the development and progression of human diseases such as cancer. As opposed to the irreversible nature of genetic events, which introduce changes in the primary DNA sequence, epigenetic modifications are reversible and leave the original DNA sequence intact. There is now evidence that the epigenetic landscape in humans undergoes modifications as the result of normal aging, with older individuals exhibiting higher levels of promoter hypermethylation compared to younger ones. Thus, it has been proposed that the higher incidence of certain disease in older individuals might be, in part, a consequence of an inherent change in the control and regulation of the epigenome. These observations are of remarkable clinical significance since the aberrant epigenetic changes characteristic of disease provide a unique platform for the development of new therapeutic approaches. In this review, we address the significance of DNA methylation changes that result or lead to disease, occur with aging, or may be the result of environmental exposure. We provide a detailed description of quantitative techniques currently available for the detection and analysis of DNA methylation and provide a comprehensive framework that may allow for the incorporation of protocols which include DNA methylation as a tool for disease diagnosis and classification, which could lead to the tailoring of therapeutic approaches designed to individual patient needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Christman JK (1982) Separation of major and minor deoxyribonucleoside monophosphates by reverse-phase high-performance liquid chromatography: a simple method applicable to quantitation of methylated nucleotides in DNA. Anal Biochem 119:38–48

    PubMed  CAS  Google Scholar 

  2. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-Adenosylmethionine and methylation. FASEB J 10:471–480

    PubMed  CAS  Google Scholar 

  3. Franchina M, Kay PH (2000) Evidence that cytosine residues within 5′-CCTGG-3′ pentanucleotides can be methylated in human DNA independently of the methylating system that modifies 5′-CG-3′ dinucleotides. DNA Cell Biol 19:521–526

    PubMed  CAS  Google Scholar 

  4. Malone CS, Miner MD, Doerr JR, Jackson JP, Jacobsen SE, Wall R, Teitell M (2001) CmC(A/T)GG DNA methylation in mature B cell lymphoma gene silencing. Proc Natl Acad Sci U S A 98:10404–10409

    PubMed  CAS  Google Scholar 

  5. Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nat Genet 10:20–27

    PubMed  CAS  Google Scholar 

  6. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242

    PubMed  CAS  Google Scholar 

  7. Schmitt F, Oakeley EJ, Jost JP (1997) Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem 272:1534–1540

    PubMed  CAS  Google Scholar 

  8. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    PubMed  CAS  Google Scholar 

  9. Blanchard F, Tracy E, Smith J, Chattopadhyay S, Wang Y, Held WA, Baumann H (2003) DNA methylation controls the responsiveness of hepatoma cells to leukemia inhibitory factor. Hepatology 38:1516–1528

    PubMed  CAS  Google Scholar 

  10. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    PubMed  CAS  Google Scholar 

  11. Fruhwald MC, O’Dorisio MS, Dai Z, Rush LJ, Krahe R, Smiraglia DJ, Pietsch T, Elsea SH, Plass C (2001) Aberrant hypermethylation of the major breakpoint cluster region in 17p11.2 in medulloblastomas but not supratentorial PNETs. Genes Chromosomes Cancer 30:38–47

    PubMed  CAS  Google Scholar 

  12. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167

    PubMed  CAS  Google Scholar 

  13. Ballabio A, Willard HF (1992) Mammalian X-chromosome inactivation and the XIST gene. Curr Opin Genet Dev 2:439–447

    PubMed  CAS  Google Scholar 

  14. Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571–610

    PubMed  CAS  Google Scholar 

  15. Allaman-Pillet N, Djemai A, Bonny C, Schorderet DF (1998) Methylation status of CpG sites and methyl-CpG binding proteins are involved in the promoter regulation of the mouse Xist gene. Gene Expr 7:61–73

    PubMed  CAS  Google Scholar 

  16. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    PubMed  CAS  Google Scholar 

  17. Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. Bioessays 21:402–411

    PubMed  CAS  Google Scholar 

  18. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    PubMed  CAS  Google Scholar 

  19. Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1107

    PubMed  CAS  Google Scholar 

  20. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99:3740–3745

    PubMed  CAS  Google Scholar 

  21. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    PubMed  CAS  Google Scholar 

  22. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    PubMed  CAS  Google Scholar 

  23. Dai Z, Zhu WG, Morrison CD, Brena RM, Smiraglia DJ, Raval A, Wu YZ, Rush LJ, Ross P, Molina JR, Otterson GA, Plass C (2003) A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet 12:791–801

    PubMed  CAS  Google Scholar 

  24. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    PubMed  CAS  Google Scholar 

  25. Okano M, Takebayashi S, Okumura K, Li E (1999) Assignment of cytosine-5 DNA methyltransferases Dnmt3a and Dnmt3b to mouse chromosome bands 12A2–A3 and 2H1 by in situ hybridization. Cytogenet Cell Genet 86:333–334

    PubMed  CAS  Google Scholar 

  26. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    PubMed  CAS  Google Scholar 

  27. Gaudet F, Rideout WM III, Meissner A, Dausman J, Leonhardt H, Jaenisch R (2004) Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol Cell Biol 24:1640–1648

    PubMed  CAS  Google Scholar 

  28. Grandjean PW, Crouse SF, Rohack JJ (2000) Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise. J Appl Physiol 89:472–480

    PubMed  CAS  Google Scholar 

  29. Gringras P, Chen W (2001) Mechanisms for differences in monozygous twins. Early Hum Dev 64:105–117

    PubMed  CAS  Google Scholar 

  30. Cardno AG, Rijsdijk FV, Sham PC, Murray RM, McGuffin P (2002) A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry 159:539–545

    PubMed  Google Scholar 

  31. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    PubMed  CAS  Google Scholar 

  32. Cantoni GL (1985) The role of S-adenosylhomocysteine in the biological utilization of S-adenosylmethionine. Prog Clin Biol Res 198:47–65

    PubMed  CAS  Google Scholar 

  33. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275:29318–29323

    PubMed  CAS  Google Scholar 

  34. Wainfan E, Poirier LA (1992) Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res 52:2071s–2077s

    PubMed  CAS  Google Scholar 

  35. Pogribny IP, Basnakian AG, Miller BJ, Lopatina NG, Poirier LA, James SJ (1995) Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55:1894–1901

    PubMed  CAS  Google Scholar 

  36. Pogribny IP, James SJ, Jernigan S, Pogribna M (2004) Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues. Mutat Res 548:53–59

    PubMed  CAS  Google Scholar 

  37. Shivapurkar N, Poirier LA (1983) Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis 4:1051–1057

    PubMed  CAS  Google Scholar 

  38. Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O’Dorisio MS, Held WA, Cavenee WK, Plass C (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138

    PubMed  CAS  Google Scholar 

  39. Smiraglia DJ, Rush LJ, Fruhwald MC, Dai Z, Held WA, Costello JF, Lang JC, Eng C, Li B, Wright FA, Caligiuri MA, Plass C (2001) Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet 10:1413–1419

    PubMed  CAS  Google Scholar 

  40. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM et al (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91:9700–9704

    PubMed  CAS  Google Scholar 

  41. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93

    PubMed  CAS  Google Scholar 

  42. Momparler RL, Eliopoulos N, Ayoub J (2000) Evaluation of an inhibitor of DNA methylation, 5-aza-2′-deoxycytidine, for the treatment of lung cancer and the future role of gene therapy. Adv Exp Med Biol 465:433–446

    PubMed  CAS  Google Scholar 

  43. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    PubMed  CAS  Google Scholar 

  44. Esteller M (2003) Cancer epigenetics: DNA methylation and chromatin alterations in human cancer. Adv Exp Med Biol 532:39–49

    PubMed  CAS  Google Scholar 

  45. Han SY, Iliopoulos D, Druck T, Guler G, Grubbs CJ, Pereira M, Zhang Z, You M, Lubet RA, Fong LY, Huebner K (2004) CpG methylation in the Fhit regulatory region: relation to Fhit expression in murine tumors. Oncogene 23:3990–3998

    PubMed  CAS  Google Scholar 

  46. Kim H, Kwon YM, Kim JS, Lee H, Park JH, Shim YM, Han J, Park J, Kim DH (2004) Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J Clin Oncol 22:2363–2370

    PubMed  CAS  Google Scholar 

  47. Kim JS, Lee H, Kim H, Shim YM, Han J, Park J, Kim DH (2004) Promoter methylation of retinoic acid receptor beta 2 and the development of second primary lung cancers in non-small-cell lung cancer. J Clin Oncol 22:3443–3450

    PubMed  CAS  Google Scholar 

  48. Maruyama R, Sugio K, Yoshino I, Maehara Y, Gazdar AF (2004) Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer 100:1472–1477

    PubMed  CAS  Google Scholar 

  49. Sathyanarayana UG, Padar A, Huang CX, Suzuki M, Shigematsu H, Bekele BN, Gazdar AF (2003) Aberrant promoter methylation and silencing of laminin-5-encoding genes in breast carcinoma. Clin Cancer Res 9:6389–6394

    PubMed  CAS  Google Scholar 

  50. Sorm F, Piskala A, Cihak A, Vesely J (1964) 5-Azacytidine, a new, highly effective cancerostatic. Experientia 20:202–203

    PubMed  CAS  Google Scholar 

  51. Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    PubMed  CAS  Google Scholar 

  52. Goffin J, Eisenhauer E (2002) DNA methyltransferase inhibitors—state of the art. Ann Oncol 13:1699–1716

    PubMed  CAS  Google Scholar 

  53. Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J, Kantarjian HM (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103:1635–1640

    PubMed  CAS  Google Scholar 

  54. Yan L, Nass SJ, Smith D, Nelson WG, Herman JG, Davidson NE (2003) Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-alpha (ER) in ER-negative human breast cancer cell lines. Cancer Biol Ther 2:552–556

    PubMed  CAS  Google Scholar 

  55. Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, Jones PA (2005) Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 4:1515–1520

    PubMed  CAS  Google Scholar 

  56. Juttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 91:11797–11801

    PubMed  CAS  Google Scholar 

  57. Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST (2005) 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25:4727–4741

    PubMed  CAS  Google Scholar 

  58. Byrd JC, Stilgenbauer S, Flinn IW (2004) Chronic lymphocytic leukemia. Hematology (Am Soc Hematol Educ Program):163–183

  59. Lubbert M (2000) DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr Top Microbiol Immunol 249:135–164

    PubMed  CAS  Google Scholar 

  60. Issa JP, Byrd JC (2005) Decitabine in chronic leukemias. Semin Hematol 42:S43–S49

    PubMed  CAS  Google Scholar 

  61. Issa JP (2000) CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol 249:101–118

    PubMed  CAS  Google Scholar 

  62. Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:245–261

    PubMed  CAS  Google Scholar 

  63. Ahuja N, Issa JP (2000) Aging, methylation and cancer. Histol Histopathol 15:835–842

    PubMed  CAS  Google Scholar 

  64. Freitas MA, Sklenar AR, Parthun MR (2004) Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J Cell Biochem 92:691–700

    PubMed  CAS  Google Scholar 

  65. Cosgrove MS, Wolberger C (2005) How does the histone code work? Biochem Cell Biol 83:468–476

    PubMed  CAS  Google Scholar 

  66. Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479

    PubMed  CAS  Google Scholar 

  67. Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183

    PubMed  CAS  Google Scholar 

  68. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    PubMed  CAS  Google Scholar 

  69. Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61:3573–3577

    PubMed  CAS  Google Scholar 

  70. Belinsky SA (2004) Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4:707–717

    PubMed  CAS  Google Scholar 

  71. Sidransky D (2002) Emerging molecular markers of cancer. Nat Rev Cancer 2:210–219

    PubMed  CAS  Google Scholar 

  72. Oakeley EJ, Schmitt F, Jost JP (1999) Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques 27:744–746, 748–750, 752

    PubMed  CAS  Google Scholar 

  73. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    PubMed  CAS  Google Scholar 

  74. Gonzalgo ML, Jones PA (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res 25:2529–2531

    PubMed  CAS  Google Scholar 

  75. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532–2534

    PubMed  CAS  Google Scholar 

  76. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    PubMed  CAS  Google Scholar 

  77. Stanssens P, Zabeau M, Meersseman G, Remes G, Gansemans Y, Storm N, Hartmer R, Honisch C, Rodi CP, Bocker S, van den Boom D (2004) High-throughput MALDI-TOF discovery of genomic sequence polymorphisms. Genome Res 14:126–133

    PubMed  CAS  Google Scholar 

  78. Ehrich M, Bocker S, van den Boom D (2005) Multiplexed discovery of sequence polymorphisms using base-specific cleavage and MALDI-TOF MS. Nucleic Acids Res 33:e38

    PubMed  Google Scholar 

  79. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 102:15785–15790

    PubMed  CAS  Google Scholar 

  80. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32

    PubMed  CAS  Google Scholar 

  81. Zeschnigk M, Bohringer S, Price EA, Onadim Z, Masshofer L, Lohmann DR (2004) A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus. Nucleic Acids Res 32:e125

    PubMed  Google Scholar 

  82. Afonina I, Zivarts M, Kutyavin I, Lukhtanov E, Gamper H, Meyer RB (1997) Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res 25:2657–2660

    PubMed  CAS  Google Scholar 

  83. Galm O, Rountree MR, Bachman KE, Jair KW, Baylin SB, Herman JG (2002) Enzymatic regional methylation assay: a novel method to quantify regional CpG methylation density. Genome Res 12:153–157

    PubMed  CAS  Google Scholar 

  84. Cottrell SE, Distler J, Goodman NS, Mooney SH, Kluth A, Olek A, Schwope I, Tetzner R, Ziebarth H, Berlin K (2004) A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res 32:e10

    PubMed  Google Scholar 

  85. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    PubMed  CAS  Google Scholar 

  86. Sozzi G, Conte D, Mariani L, Lo Vullo S, Roz L, Lombardo C, Pierotti MA, Tavecchio L (2001) Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res 61:4675–4678

    PubMed  CAS  Google Scholar 

  87. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    PubMed  CAS  Google Scholar 

  88. Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    PubMed  CAS  Google Scholar 

  89. Uhlmann K, Brinckmann A, Toliat MR, Ritter H, Nurnberg P (2002) Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis 23:4072–4079

    PubMed  CAS  Google Scholar 

  90. Colella S, Shen L, Baggerly KA, Issa JP, Krahe R (2003) Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 35:146–150

    PubMed  CAS  Google Scholar 

  91. Tost J, Dunker J, Gut IG (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35:152–156

    PubMed  CAS  Google Scholar 

  92. Dupont JM, Tost J, Jammes H, Gut IG (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127

    PubMed  CAS  Google Scholar 

  93. Ronaghi M, Elahi E (2002) Pyrosequencing for microbial typing. J Chromatogr B Analyt Technol Biomed Life Sci 782:67–72

    PubMed  CAS  Google Scholar 

  94. Kuppuswamy MN, Hoffmann JW, Kasper CK, Spitzer SG, Groce SL, Bajaj SP (1991) Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc Natl Acad Sci U S A 88:1143–1147

    PubMed  CAS  Google Scholar 

  95. Singer-Sam J, LeBon JM, Dai A, Riggs AD (1992) A sensitive, quantitative assay for measurement of allele-specific transcripts differing by a single nucleotide. PCR Methods Appl 1:160–163

    PubMed  CAS  Google Scholar 

  96. Szabo PE, Mann JR (1995) Allele-specific expression and total expression levels of imprinted genes during early mouse development: implications for imprinting mechanisms. Genes Dev 9:3097–3108

    PubMed  CAS  Google Scholar 

  97. Greenwood AD, Burke DT (1996) Single nucleotide primer extension: quantitative range, variability, and multiplex analysis. Genome Res 6:336–348

    PubMed  CAS  Google Scholar 

  98. Thomassin H, Kress C, Grange T (2004) MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res 32:e168

    PubMed  Google Scholar 

  99. Agrelo R, Setien F, Espada J, Artiga MJ, Rodriguez M, Perez-Rosado A, Sanchez-Aguilera A, Fraga MF, Piris MA, Esteller M (2005) Inactivation of the lamin A/C Gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-Cell lymphoma. J Clin Oncol 23:3940–3947

    PubMed  CAS  Google Scholar 

  100. Raval A, Lucas DM, Matkovic JJ, Bennett KL, Liyanarachchi S, Young DC, Rassenti L, Kipps TJ, Grever MR, Byrd JC, Plass C (2005) TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. J Clin Oncol 23:3877–3885

    PubMed  CAS  Google Scholar 

  101. Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, Held WA (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A 102:3336–3341

    PubMed  CAS  Google Scholar 

  102. Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, Raval A, Liu TH, Ding W, Mao C, Liu S, Smith LT, Lee S, Rassenti L, Marcucci G, Byrd J, Caligiuri MA, Plass C (2005) Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet 37:265–274

    PubMed  CAS  Google Scholar 

  103. Lewin J, Schmitt AO, Adorjan P, Hildmann T, Piepenbrock C (2004) Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics 20:3005–3012

    PubMed  CAS  Google Scholar 

  104. Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J, Cox AV, Andrews TD, Howe KL, Otto T, Olek A, Fischer J, Gut IG, Berlin K, Beck S (2004) DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol 2:e405

    PubMed  Google Scholar 

  105. Adorjan P, Distler J, Lipscher E, Model F, Muller J, Pelet C, Braun A, Florl AR, Gutig D, Grabs G, Howe A, Kursar M, Lesche R, Leu E, Lewin A, Maier S, Muller V, Otto T, Scholz C, Schulz WA, Seifert HH, Schwope I, Ziebarth H, Berlin K, Piepenbrock C, Olek A (2002) Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res 30:e21

    PubMed  Google Scholar 

  106. Gitan RS, Shi H, Chen CM, Yan PS, Huang TH (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12:158–164

    PubMed  CAS  Google Scholar 

  107. Shi H, Maier S, Nimmrich I, Yan PS, Caldwell CW, Olek A, Huang TH (2003) Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J Cell Biochem 88:138–143

    PubMed  CAS  Google Scholar 

  108. Leu YW, Yan PS, Fan M, Jin VX, Liu JC, Curran EM, Welshons WV, Wei SH, Davuluri RV, Plass C, Nephew KP, Huang TH (2004) Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res 64:8184–8192

    PubMed  CAS  Google Scholar 

  109. Rein T, DePamphilis ML, Zorbas H (1998) Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res 26:2255–2264

    PubMed  CAS  Google Scholar 

  110. Kuo KC, McCune RA, Gehrke CW, Midgett R, Ehrlich M (1980) Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res 8:4763–4776

    PubMed  CAS  Google Scholar 

  111. Gomes JD, Chang CJ (1983) Reverse-phase high-performance liquid chromatography of chemically modified DNA. Anal Biochem 129:387–391

    PubMed  CAS  Google Scholar 

  112. Morris RG (1989) Improved liquid chromatographic fluorescence method for estimation of plasma sotalol concentrations. Ther Drug Monit 11:63–66

    PubMed  CAS  Google Scholar 

  113. Ramsahoye BH (2002) Measurement of genome wide DNA methylation by reversed-phase high-performance liquid chromatography. Methods 27:156–161

    PubMed  CAS  Google Scholar 

  114. del Gaudio R, Di Giaimo R, Geraci G (1997) Genome methylation of the marine annelid worm Chaetopterus variopedatus: methylation of a CpG in an expressed H1 histone gene. FEBS Lett 417:48–52

    PubMed  Google Scholar 

  115. Huang TH, Perry MR, Laux DE (1999) Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8:459–470

    PubMed  CAS  Google Scholar 

  116. Yan PS, Chen CM, Shi H, Rahmatpanah F, Wei SH, Caldwell CW, Huang TH (2001) Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res 61:8375–8380

    PubMed  CAS  Google Scholar 

  117. Lippman Z, Gendrel AV, Colot V, Martienssen R (2005) Profiling DNA methylation patterns using genomic tiling microarrays. Nat Methods 2:219–224

    PubMed  CAS  Google Scholar 

  118. Nouzova M, Holtan N, Oshiro MM, Isett RB, Munoz-Rodriguez JL, List AF, Narro ML, Miller SJ, Merchant NC, Futscher BW (2004) Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays. J Pharmacol Exp Ther 311:968–981

    PubMed  CAS  Google Scholar 

  119. Hatada I, Hayashizaki Y, Hirotsune S, Komatsubara H, Mukai T (1991) A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci U S A 88:9523–9527

    PubMed  CAS  Google Scholar 

  120. Okazaki Y, Okuizumi H, Sasaki N, Ohsumi T, Kuromitsu J, Hirota N, Muramatsu M, Hayashizaki Y (1995) An expanded system of restriction landmark genomic scanning (RLGS Ver. 1.8). Electrophoresis 16:197–202

    PubMed  CAS  Google Scholar 

  121. Kuromitsu J, Kataoka H, Yamashita H, Muramatsu M, Furuichi Y, Sekine T, Hayashizaki Y (1995) Reproducible alterations of DNA methylation at a specific population of CpG islands during blast formation of peripheral blood lymphocytes. DNA Res 2:263–267

    PubMed  CAS  Google Scholar 

  122. Motiwala T, Ghoshal K, Das A, Majumder S, Weichenhan D, Wu YZ, Holman K, James SJ, Jacob ST, Plass C (2003) Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene 22:6319–6331

    PubMed  CAS  Google Scholar 

  123. Smiraglia DJ, Smith LT, Lang JC, Rush LJ, Dai Z, Schuller DE, Plass C (2003) Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 40:25–33

    PubMed  CAS  Google Scholar 

  124. Rush LJ, Plass C (2002) Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal Biochem 307:191–201

    PubMed  CAS  Google Scholar 

  125. Costello JF, Smiraglia DJ, Plass C (2002) Restriction landmark genome scanning. Methods 27:144–149

    PubMed  CAS  Google Scholar 

  126. Rush LJ, Dai Z, Smiraglia DJ, Gao X, Wright FA, Fruhwald M, Costello JF, Held WA, Yu L, Krahe R, Kolitz JE, Bloomfield CD, Caligiuri MA, Plass C (2001) Novel methylation targets in de novo acute myeloid leukemia with prevalence of chromosome 11 loci. Blood 97:3226–3233

    PubMed  CAS  Google Scholar 

  127. Dai Z, Lakshmanan RR, Zhu WG, Smiraglia DJ, Rush LJ, Fruhwald MC, Brena RM, Li B, Wright FA, Ross P, Otterson GA, Plass C (2001) Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia 3:314–323

    PubMed  CAS  Google Scholar 

  128. Kremenskoy M, Kremenska Y, Ohgane J, Hattori N, Tanaka S, Hashizume K, Shiota K (2003) Genome-wide analysis of DNA methylation status of CpG islands in embryoid bodies, teratomas, and fetuses. Biochem Biophys Res Commun 311:884–890

    PubMed  CAS  Google Scholar 

  129. Zardo G, Tiirikainen MI, Hong C, Misra A, Feuerstein BG, Volik S, Collins CC, Lamborn KR, Bollen A, Pinkel D, Albertson DG, Costello JF (2002) Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet 32:453–458

    PubMed  CAS  Google Scholar 

  130. Nagai H, Kim YS, Yasuda T, Ohmachi Y, Yokouchi H, Monden M, Emi M, Konishi N, Nogami M, Okumura K, Matsubara K (1999) A novel sperm-specific hypomethylation sequence is a demethylation hotspot in human hepatocellular carcinomas. Gene 237:15–20

    PubMed  CAS  Google Scholar 

  131. Konishi N, Tao M, Nakamura M, Kitahaori Y, Hiasa Y, Nagai H (1996) Genomic alterations in human prostate carcinoma cell lines by two-dimensional gel analysis. Cell Mol Biol (Noisy-le-grand) 42:1129–1135

    CAS  Google Scholar 

  132. Lindsay S, Bird AP (1987) Use of restriction enzymes to detect potential gene sequences in mammalian DNA. Nature 327:336–338

    PubMed  CAS  Google Scholar 

  133. Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA, Ling V, MacAulay C, Lam WL (2004) A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 36:299–303

    PubMed  CAS  Google Scholar 

  134. Ching TT, Maunakea AK, Jun P, Hong C, Zardo G, Pinkel D, Albertson DG, Fridlyand J, Mao JH, Shchors K, Weiss WA, Costello JF (2005) Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet 37:645–651

    PubMed  CAS  Google Scholar 

  135. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    PubMed  CAS  Google Scholar 

  136. Misawa A, Inoue J, Sugino Y, Hosoi H, Sugimoto T, Hosoda F, Ohki M, Imoto I, Inazawa J (2005) Methylation-associated silencing of the nuclear receptor 1I2 gene in advanced-type neuroblastomas, identified by bacterial artificial chromosome array-based methylated CpG island amplification. Cancer Res 65:10233–10242

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Laura J. Rush and Dr. Joseph Costello for their input and critical reading of this manuscript. The work is supported in part by National Institute of Health grants CA93548 and DE13123, the Leukemia and Lymphoma Society, and the foundation Women Against Lung Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Plass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brena, R.M., Huang, T.HM. & Plass, C. Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med 84, 365–377 (2006). https://doi.org/10.1007/s00109-005-0034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0034-0

Keywords

Navigation