Skip to main content

Advertisement

Log in

Autophagy in innate and adaptive immunity against intracellular pathogens

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Autophagy delivers cytoplasmic constituents for lysosomal degradation. Recent studies have demonstrated that this pathway mediates resistance to pathogens and is targeted for immune evasion by viruses and bacteria. Lysosomal degradation products, including pathogenic determinants, are then surveyed by the adaptive immune system to elicit antigen-specific T cell responses. CD4+ T helper cells have been shown to recognize nuclear and cytosolic antigens via presentation by major histocompatibility complex (MHC) class II molecules after autophagy. Furthermore, some sources of natural MHC class II ligands display characteristics of autophagy substrates, and autophagosomes fuse with late endosomes, in which MHC class II loading is thought to occur. Although MHC class II antigen processing via autophagy has so far mainly been described for professional antigen-presenting cells like B cells, macrophages, and dendritic cells, it might be even more important for cells with less endocytic potential, like epithelial cells, when these express MHC class II at sites of inflammation. Therefore, autophagy might contribute to immune surveillance of intracellular pathogens via MHC class II presentation of intracellular pathogen-derived peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

Atg:

Autophagy-related gene

CLIP:

Class II-associated Ii-derived peptide

CTL:

Cytotoxic T lymphocyte

DRiP:

Defective ribosomal product

EBNA1:

Epstein–Barr virus nuclear antigen 1

EBV:

Epstein–Barr virus

Hsc70:

Heat shock cognate protein 70/73

HLA:

Human leukocyte antigen

Ii:

Invariant chain

LAMP:

Lysosomal-associated membrane protein

MHC:

Major histocompatibility complex

MIIC:

MHC class II-containing compartment

Mtb:

Mycobacterium tuberculosis

Th:

T helper cell

References

  1. Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179–187

    Article  PubMed  CAS  Google Scholar 

  2. Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525

    Article  PubMed  CAS  Google Scholar 

  3. Yewdell JW, Reits E, Neefjes J (2003) Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol 3:952–961

    Article  PubMed  CAS  Google Scholar 

  4. Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22:539–550

    Article  PubMed  CAS  Google Scholar 

  5. Henell F, Berkenstam A, Ahlberg J, Glaumann H (1987) Degradation of short- and long-lived proteins in perfused liver and in isolated autophagic vacuoles-lysosomes. Exp Mol Pathol 46:1–14

    Article  PubMed  CAS  Google Scholar 

  6. Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 23:975–1028

    Article  PubMed  CAS  Google Scholar 

  7. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  8. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  PubMed  CAS  Google Scholar 

  9. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  10. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  PubMed  CAS  Google Scholar 

  11. Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503

    Article  PubMed  CAS  Google Scholar 

  12. Cuervo AM, Dice JF (2000) Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 113(Pt 24):4441–4450

    PubMed  CAS  Google Scholar 

  13. Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246:382–385

    Article  PubMed  CAS  Google Scholar 

  14. Agarraberes FA, Terlecky SR, Dice JF (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137:825–834

    Article  PubMed  CAS  Google Scholar 

  15. Agarraberes FA, Dice JF (2001) Protein translocation across membranes. Biochim Biophys Acta 1513:1–24

    Article  PubMed  CAS  Google Scholar 

  16. Yoshimori T (2004) Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313:453–458

    Article  PubMed  CAS  Google Scholar 

  17. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  PubMed  CAS  Google Scholar 

  18. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    Article  PubMed  CAS  Google Scholar 

  19. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  20. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  PubMed  CAS  Google Scholar 

  21. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    Article  PubMed  CAS  Google Scholar 

  22. Kim J, Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303–342

    Article  PubMed  CAS  Google Scholar 

  23. Shintani T, Huang WP, Stromhaug PE, Klionsky DJ (2002) Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3:825–837

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki K, Kamada Y, Ohsumi Y (2002) Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev Cell 3:815–824

    Article  PubMed  CAS  Google Scholar 

  25. Simonsen A, Birkeland HC, Gillooly DJ, Mizushima N, Kuma A, Yoshimori T, Slagsvold T, Brech A, Stenmark H (2004) Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 117:4239–4251

    Article  PubMed  CAS  Google Scholar 

  26. Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–162

    PubMed  CAS  Google Scholar 

  27. Kirkegaard K, Taylor MP, Jackson WT (2004) Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2:301–314

    Article  PubMed  CAS  Google Scholar 

  28. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  PubMed  CAS  Google Scholar 

  29. Rich KA, Burkett C, Webster P (2003) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5:455–468

    Article  PubMed  CAS  Google Scholar 

  30. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040

    Article  PubMed  CAS  Google Scholar 

  31. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular shigella from autophagy. Science 307:727–731

    Article  PubMed  CAS  Google Scholar 

  32. Amer AO, Swanson MS (2005) Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7:765–778

    Article  PubMed  CAS  Google Scholar 

  33. Talloczy Z, Jiang W, Virgin, HWt, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B (2002) Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci U S A 99:190–195

    Article  PubMed  CAS  Google Scholar 

  34. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596

    PubMed  CAS  Google Scholar 

  35. Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR (2004) Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 279:10136–10141

    Article  PubMed  CAS  Google Scholar 

  36. Pedersen KW, van der Meer Y, Roos N, Snijder EJ (1999) Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J Virol 73:2016–2026

    PubMed  CAS  Google Scholar 

  37. Schlegel A, Giddings TH Jr, Ladinsky MS, Kirkegaard K (1996) Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol 70:6576–6588

    PubMed  CAS  Google Scholar 

  38. Suhy DA, Giddings TH Jr, Kirkegaard K (2000) Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74:8953–8965

    Article  PubMed  CAS  Google Scholar 

  39. Jackson WT, Giddings TH Jr, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156

    Article  PubMed  Google Scholar 

  40. Meyers G, Stoll D, Gunn M (1998) Insertion of a sequence encoding light chain 3 of microtubule-associated proteins 1A and 1B in a pestivirus genome: connection with virus cytopathogenicity and induction of lethal disease in cattle. J Virol 72:4139–4148

    PubMed  CAS  Google Scholar 

  41. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  PubMed  CAS  Google Scholar 

  42. Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL (1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178:27–47

    Article  PubMed  CAS  Google Scholar 

  43. Dongre AR, Kovats S, deRoos P, McCormack AL, Nakagawa T, Paharkova-Vatchkova V, Eng J, Caldwell H, Yates JR III, Rudensky AY (2001) In vivo MHC class II presentation of cytosolic proteins revealed by rapid automated tandem mass spectrometry and functional analyses. Eur J Immunol 31:1485–1494

    Article  PubMed  CAS  Google Scholar 

  44. Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 102:7922–7927

    Article  PubMed  CAS  Google Scholar 

  45. Aniento F, Roche E, Cuervo AM, Knecht E (1993) Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes. J Biol Chem 268:10463–10470

    PubMed  CAS  Google Scholar 

  46. Fengsrud M, Raiborg C, Berg TO, Stromhaug PE, Ueno T, Erichsen ES, Seglen PO (2000) Autophagosome-associated variant isoforms of cytosolic enzymes. Biochem J 352(Pt 3):773–781

    Article  PubMed  CAS  Google Scholar 

  47. Friede T, Gnau V, Jung G, Keilholz W, Stevanovic S, Rammensee HG (1996) Natural ligand motifs of closely related HLA-DR4 molecules predict features of rheumatoid arthritis associated peptides. Biochim Biophys Acta 1316:85–101

    PubMed  Google Scholar 

  48. Harris PE, Maffei A, Colovai AI, Kinne J, Tugulea S, Suciu-Foca N (1996) Predominant HLA-class II bound self-peptides of a hematopoietic progenitor cell line are derived from intracellular proteins. Blood 87:5104–5112

    PubMed  CAS  Google Scholar 

  49. Rammensee HG, Bachmann J, Stevanovic S (1997) MHC ligands and peptide motifs. Springer, Berlin Heidelberg New York; Landes Bioscience, Austin

    Google Scholar 

  50. Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79:1889–1892

    Article  PubMed  CAS  Google Scholar 

  51. Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, Mautner J (2003) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33:1250–1259

    Article  PubMed  CAS  Google Scholar 

  52. Brazil MI, Weiss S, Stockinger B (1997) Excessive degradation of intracellular protein in macrophages prevents presentation in the context of major histocompatibility complex class II molecules. Eur J Immunol 27:1506–1514

    Article  PubMed  CAS  Google Scholar 

  53. Dörfel D, Appel S, Grunebach F, Weck MM, Muller MR, Heine A, Brossart P (2005) Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro transcribed MUC1 RNA. Blood 105:3199–3205

    Article  PubMed  Google Scholar 

  54. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Münz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593–596

    Article  PubMed  CAS  Google Scholar 

  55. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243:240–246

    Article  PubMed  CAS  Google Scholar 

  56. Biederbick A, Kern HF, Elsasser HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66:3–14

    PubMed  CAS  Google Scholar 

  57. Zhou D, Li P, Lott JM, Hislop A, Canaday DH, Brutkiewicz RR, Blum JS (2005) Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22:571–581

    Article  PubMed  CAS  Google Scholar 

  58. Lich JD, Elliott JF, Blum JS (2000) Cytoplasmic processing is a prerequisite for presentation of an endogenous antigen by major histocompatibility complex class II proteins. J Exp Med 191:1513–1524

    Article  PubMed  CAS  Google Scholar 

  59. Dul JL, Davis DP, Williamson EK, Stevens FJ, Argon Y (2001) Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains. J Cell Biol 152:705–716

    Article  PubMed  CAS  Google Scholar 

  60. Barette C, Jariel-Encontre I, Piechaczyk M, Piette J (2001) Human cyclin C protein is stabilized by its associated kinase cdk8, independently of its catalytic activity. Oncogene 20:551–562

    Article  PubMed  CAS  Google Scholar 

  61. Dice JF, Goldberg AL (1975) A statistical analysis of the relationship between degradative rates and molecular weights of proteins. Arch Biochem Biophys 170:213–219

    Article  PubMed  CAS  Google Scholar 

  62. Gueguen M, Long EO (1996) Presentation of a cytosolic antigen by major histocompatibility complex class II molecules requires a long-lived form of the antigen. Proc Natl Acad Sci U S A 93:14692–14697

    Article  PubMed  CAS  Google Scholar 

  63. Blake N, Lee S, Redchenko I, Thomas W, Steven N, Leese A, Steigerwald-Mullen P, Kurilla MG, Frappier L, Rickinson A (1997) Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7:791–802

    Article  PubMed  CAS  Google Scholar 

  64. Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A 94:12616–12621

    Article  PubMed  CAS  Google Scholar 

  65. Lee SP, Brooks JM, Al-Jarrah H, Thomas WA, Haigh TA, Taylor GS, Humme S, Schepers A, Hammerschmidt W, Yates JL, Rickinson AB, Blake NW (2004) CD8 T cell recognition of endogenously expressed Epstein–Barr virus nuclear antigen 1. J Exp Med 199:1409–1420

    Article  PubMed  CAS  Google Scholar 

  66. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    Article  PubMed  CAS  Google Scholar 

  67. Reits EA, Vos JC, Gromme M, Neefjes J (2000) The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404:774–778

    Article  PubMed  CAS  Google Scholar 

  68. Princiotta MF, Finzi D, Qian SB, Gibbs J, Schuchmann S, Buttgereit F, Bennink JR, Yewdell JW (2003) Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18:343–354

    Article  PubMed  CAS  Google Scholar 

  69. Ciechanover A, Finley D, Varshavsky A (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37:57–66

    Article  PubMed  CAS  Google Scholar 

  70. Zwart W, Griekspoor A, Kuijl C, Marsman M, van Rheenen J, Janssen H, Calafat J, van Ham M, Janssen L, van Lith M, Jalink K, Neefjes J (2005) Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape. Immunity 22:221–233

    Article  PubMed  CAS  Google Scholar 

  71. Stromhaug PE, Berg TO, Fengsrud M, Seglen PO (1998) Purification and characterization of autophagosomes from rat hepatocytes. Biochem J 335(Pt 2):217–224

    PubMed  CAS  Google Scholar 

  72. Fengsrud M, Erichsen ES, Berg TO, Raiborg C, Seglen PO (2000) Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur J Cell Biol 79:871–882

    Article  PubMed  CAS  Google Scholar 

  73. Lajoie P, Guay G, Dennis JW, Nabi IR (2005) The lipid composition of autophagic vacuoles regulates expression of multilamellar bodies. J Cell Sci 118:1991–2003

    Article  PubMed  CAS  Google Scholar 

  74. Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883–21892

    Article  PubMed  CAS  Google Scholar 

  75. Liou W, Geuze HJ, Geelen MJ, Slot JW (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 136:61–70

    Article  PubMed  CAS  Google Scholar 

  76. Kleijmeer MJ, Morkowski S, Griffith JM, Rudensky AY, Geuze HJ (1997) Major histocompatibility complex class II compartments in human and mouse B lymphoblasts represent conventional endocytic compartments. J Cell Biol 139:639–649

    Article  PubMed  CAS  Google Scholar 

  77. Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176

    Article  PubMed  CAS  Google Scholar 

  78. Reith W, Mach B (2001) The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol 19:331–373

    Article  PubMed  CAS  Google Scholar 

  79. Sun JC, Williams MA, Bevan MJ (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5:927–933

    Article  PubMed  CAS  Google Scholar 

  80. Bevan MJ (2004) Helping the CD8+ T-cell response. Nat Rev Immunol 4:595–602

    Article  PubMed  CAS  Google Scholar 

  81. Stalder T, Hahn S, Erb P (1994) Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J Immunol 152:1127–1133

    PubMed  CAS  Google Scholar 

  82. Hahn S, Gehri R, Erb P (1995) Mechanism and biological significance of CD4-mediated cytotoxicity. Immunol Rev 146:57–79

    Article  PubMed  CAS  Google Scholar 

  83. Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A, Waters A, Easterbrook P, Grey P, Smith D, McMichael AJ, Cooper DA, Rowland-Jones SL, Kelleher AD (2002) Characterization of CD4+ CTLs ex vivo. J Immunol 168:5954–5958

    PubMed  CAS  Google Scholar 

  84. Jellison ER, Kim SK, Welsh RM (2005) Cutting edge: MHC class II-restricted killing in vivo during viral infection. J Immunol 174:614–618

    PubMed  CAS  Google Scholar 

  85. Paludan C, Bickham K, Nikiforow S, Tsang ML, Goodman K, Hanekom WA, Fonteneau JF, Stevanovic S, Münz C (2002) EBNA1 specific CD4+ Th1 cells kill Burkitt's lymphoma cells. J Immunol 169:1593–1603

    PubMed  CAS  Google Scholar 

  86. Nikiforow S, Bottomly K, Miller G, Münz C (2003) Cytolytic CD4+-T-cell clones reactive to EBNA1 inhibit epstein–barr virus-induced B-cell proliferation. J Virol 77:12088–12104

    Article  PubMed  CAS  Google Scholar 

  87. Stevenson PG, Cardin RD, Christensen JP, Doherty PC (1999) Immunological control of a murine gammaherpesvirus independent of CD8+ T cells. J Gen Virol 80:477–483

    PubMed  CAS  Google Scholar 

  88. Sparks-Thissen RL, Braaten DC, Kreher S, Speck SH, Virgin HW (2004) An optimized CD4 T-cell response can control productive and latent gammaherpesvirus infection. J Virol 78:6827–6835

    Article  PubMed  CAS  Google Scholar 

  89. Robertson KA, Usherwood EJ, Nash AA (2001) Regression of a murine gammaherpesvirus 68-positive B-cell lymphoma mediated by CD4 T lymphocytes. J Virol 75:3480–3482

    Article  PubMed  CAS  Google Scholar 

  90. Fu T, Voo KS, Wang RF (2004) Critical role of EBNA1-specific CD4+ T cells in the control of mouse Burkitt lymphoma in vivo. J Clin Invest 114:542–550

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Cancer Institute (R01CA108609), the Arnold and Mabel Beckman Foundation, and the Alexandrine and Alexander Sinsheimer Foundation for supporting our research (to C.M.). D.S. is a recipient of a predoctoral fellowship from the Schering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Münz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, D., Dengjel, J., Schoor, O. et al. Autophagy in innate and adaptive immunity against intracellular pathogens. J Mol Med 84, 194–202 (2006). https://doi.org/10.1007/s00109-005-0014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0014-4

Keywords

Navigation