Skip to main content

Advertisement

Log in

Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Microarray studies revealed that as a first hit the SV40 T/t antigen causes deregulation of 462 genes in mammary gland cells (ME cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell proliferation specific and Rb-E2F dependent, causing ME cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal ME cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal ME cells. The profile of retransformants shows that only 38 deregulated genes are tumor-specific, and that none of them is considered to be a typical breast cancer gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CA :

Correspondence analysis

DMEM :

Dulcecco’s modified Eagle medium

IRF :

Interferon regulatory factor

ME :

Mammary gland epithelial

OAS :

2′-5′-Oligoadenylate synthetase family members

PBS :

Phosphate-buffered saline

SV40 :

Simian virus 40

WAP :

Whey acidic milk protein

References

  1. Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci USA 100:776–781

    Article  Google Scholar 

  2. Oesterreich S, Fuqua SA (1999) Tumor suppressor genes in breast cancer. Endocr Relat Cancer 6:405–419

    Article  Google Scholar 

  3. Hulit J, Lee RJ, Russell RG, Pestell RG (2002) ErbB-2-induced mammary tumor growth: the role of cyclin D1 and p27Kip1. Biochem Pharmacol 64:827–836

    Google Scholar 

  4. Ness SA (1996) The Myb oncoprotein: regulating a regulator. Biochim Biophys Acta 1288:123–139

    Google Scholar 

  5. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning P, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  Google Scholar 

  6. Graessmann M, Graessman A (1976) “Early” simian-virus-40-specific RNA contains information for tumor antigen formation and chromatin replication. Proc Natl Acad Sci USA 73:366–370

    Google Scholar 

  7. Ali SH, DeCaprio JA (2001) Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11:15–23

    Article  Google Scholar 

  8. Klein A, Guhl E, Tzeng YJ, Fuhrhop J, Levrero M, Graessmann M, Graessmann A (2003) HBX causes cyclin D1 overexpression and development of breast cancer in transgenic animals that are heterozygous for p53. Oncogene 22:2910–2919

    Article  Google Scholar 

  9. Tzeng YJ, Guhl E, Graessmann M, Graessmann A (1993) Breast cancer formation in transgenic animals induced by the whey acidic protein SV40 T antigen (WAP-SV-T) hybrid gene. Oncogene 8:1965–1971

    Google Scholar 

  10. Tzeng YJ, Zimmermann C, Guhl E, Berg B, Avantaggiati ML, Graessmann A (1998) SV40 T/t-antigen induces premature mammary gland involution by apoptosis and selects for p53 missense mutation in mammary tumors. Oncogene 16:2103–2114

    Article  Google Scholar 

  11. DeGregori J (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 1602:131–150

    Google Scholar 

  12. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  Google Scholar 

  13. Pun T, Hochstrasser DF, Appel RD, Funk M, Villars-Augsburger V, Pellegrini C (1988) Computerized classification of two-dimensional gel electrophoretograms by correspondence analysis and ascendant hierarchical clustering. Appl Theor Electrophor 1:3–9

    Google Scholar 

  14. Fellenberg K, Hauser N, Brors B, Neutzner A, Hoheisel JD, Vingron M (2001) Correspondence analysis applied to microarray data. Proc Natl Acad Sci USA 98:10781–10786

    Article  Google Scholar 

  15. Graessmann M, Michaels G, Berg B, Graessmann A (1991) Inhibition of SV40 gene expression by microinjected small antisense RNA and DNA molecules. Nucleic Acids Res 19:53–58

    Google Scholar 

  16. Santarelli R, Tzeng YJ, Zimmermann C, Guhl E, Graessmann A (1996) SV40 T-antigen induces breast cancer formation with a high efficiency in lactating and virgin WAP-SV-T transgenic animals but with a low efficiency in ovariectomized animals. Oncogene 12:495–505

    Google Scholar 

  17. Lamote I, Meyer E, Massart-Leen AM, Burvenich C (2004) Sex steroids and growth factors in the regulation of mammary gland proliferation, differentiation, and involution. Steroids 69:145–159

    Article  Google Scholar 

  18. Goetz F, Tzeng YJ, Guhl E, Merker J, Graessmann M, Graessmann A (2001) The SV40 small t-antigen prevents mammary gland differentiation and induces breast cancer formation in transgenic mice; truncated large T-antigen molecules harboring the intact p53 and pRb binding region do not have this effect. Oncogene 20:2325–2332

    Article  Google Scholar 

  19. Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, Lowe SW, Cordon-Cardo C (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430:797–802

    Article  Google Scholar 

  20. Zhou A, Hassel BA, Silverman RH (1993) Expression cloning of 2–5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72:53–65

    Google Scholar 

  21. Rogozin IB, Aravind L, Koonin EV (2003) Differential action of natural selection on the N and C-terminal domains of 2′-5′ oligoadenylate synthetases and the potential nuclease function of the C-terminal domain. J Mol Biol 326:1449–‘1461

    Article  Google Scholar 

  22. Ghosh A, Sarkar SN, Rowe TM, Sen GC (2001) A specific isozyme of 2′-5′ oligoadenylate synthetase is a dual function proapoptotic protein of the Bcl-2 family. J Biol Chem 276:25447–25455

    Article  Google Scholar 

  23. Kohlhoff S, Ziechmann C, Gottlob K, Graessmann M (2000) SV40 T/t-antigens sensitize mammary gland epithelial cells to oxidative stress and apoptosis. Free Radic Biol Med 29:497–506

    Article  Google Scholar 

  24. Zhang L, Pagano JS (2002) Structure and function of IRF-7. J Interferon Cytokine Res 22:95–101

    Google Scholar 

  25. Avantaggiati ML, Carbone M, Graessmann A, Nakatani Y, Howard B, Levine AS (1996) The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J 15:2236–2248

    Google Scholar 

  26. Caillaud A, Prakash A, Smith E, Masumi A, Hovanessian AG, Levy DE, Marie I (2002) Acetylation of interferon regulatory factor-7 by p300/CREB-binding protein (CBP)-associated factor (PCAF) impairs its DNA binding. J Biol Chem 277:49417–49421

    Article  Google Scholar 

  27. Lubyova B, Kellum MJ, Frisancho AJ, Pitha PM (2004) Kaposi’s sarcoma-associated herpesvirus-encoded vIRF-3 stimulates the transcriptional activity of cellular IRF-3 and IRF-7. J Biol Chem 279:7643–7654

    Article  Google Scholar 

  28. Hamerman JA, Hayashi F, Schroeder LA, Gygi SP, Haas AL, Hampson L, Coughlin P, Aebersold R, Aderem A (2002) Serpin 2a is induced in activated macrophages and conjugates to a ubiquitin homolog. J Immunol 168:2415–2423

    Google Scholar 

  29. Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE (2003) High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 278:16608–16613

    Article  Google Scholar 

  30. Padovan E, Terracciano L, Certa U, Jacobs B, Reschner A, Bolli M, Spagnoli GC, Borden EC, Heberer M (2002) Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res 62:3453–3458

    Google Scholar 

  31. Linforth R, Anderson N, Hoey R, Nolan T, Downey S, Brady G, Ashcroft L, Bundred N (2002) Coexpression of parathyroid hormone related protein and its receptor in early breast cancer predicts poor patient survival. Clin Cancer Res 8:3172–177

    Google Scholar 

  32. Hubert RS, Vivanco I, Chen E, Rastegar S, Leong K, Mitchell SC, Madraswala R, Zhou Y, Kuo J, Raitano AB, Jakobovits A, Saffran DC, Afar DE (1999) STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA 96:14523–14528

    Article  Google Scholar 

  33. Yang D, Holt GE, Velders MP, Kwon ED, Kast WM (2002) Murine six-transmembrane epithelial antigen of the prostate, prostate stem cell antigen, and prostate-specific membrane antigen: prostate-specific cell-surface antigens highly expressed in prostate cancer of transgenic adenocarcinoma mouse prostate mice. Cancer Res 61:5857–58560

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Verband der Chemischen Industrie. We thank Dr. A. Corfield for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolf Graessmann.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, A., Guhl, E., Zollinger, R. et al. Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals. J Mol Med 83, 362–376 (2005). https://doi.org/10.1007/s00109-004-0625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0625-1

Keywords

Navigation