Skip to main content

Advertisement

Log in

Functional analysis of a mutant form of the receptor tyrosine kinase Tie2 causing venous malformations

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Tie2 is expressed predominantly in endothelial cells and is required for blood vessel formation and maintenance. A missense mutation resulting in an R to W substitution in the kinase domain of Tie2 co-segregates with an autosomal dominantly inherited form of vascular dysmorphogenesis, venous malformation (VM). The mechanism by which this activating mutation leads to vessel dysmorphogenesis in VM is not known. Here we examined Tie2 activation status in VM and found activated receptor in lesional and non-lesional vessels. To gain insight into functional effects of VM mutant Tie2, wild-type and R849W mutant receptor were expressed in cultured human venous endothelial cells. Mutant Tie2 was constitutively phosphorylated in endothelial cells in vivo and caused a marked suppression of apoptosis. The anti-apoptotic kinase Akt was constitutively activated in cells expressing mutant receptor. Dominant-negative Akt inhibited the pro-survival activity of mutant Tie2. Migration of smooth muscle cells induced by conditioned medium from cells expressing mutant receptor was similar to that from cells expressing wild-type receptor. These data suggest that a primary effect of R849W Tie2 in VM is to allow survival of mural cell poor vessels via ligand-independent Tie2 activation of Akt and endothelial survival, rather than to directly induce formation of dysmorphogenic vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

VM :

Venous malformation

References

  1. Beck L, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11:365–373

    CAS  PubMed  Google Scholar 

  2. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P, Collen D (1998) Vascular development and disorders: molecular analysis and pathogenic insights. Kidney Int 53:1519–1549

    Article  CAS  PubMed  Google Scholar 

  4. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  CAS  PubMed  Google Scholar 

  5. Mulliken JB, Young AE (1988) Vascular birthmarks: hemangiomas and vascular malformations. Saunders, Philadelphia

    Google Scholar 

  6. Mulliken JB, Glowacki J (1982) Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 69:412–420

    CAS  PubMed  Google Scholar 

  7. Vikkula M, Boon LM, Carraway KLR, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB, Olsen BR (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87:1181–1190

    Article  CAS  PubMed  Google Scholar 

  8. Calvert JT, Riney TJ, Kontos CD, Cha EH, Prieto VG, Shea CR, Berg JN, Nevin NC, Simpson SA, Pasyk KA, Speer MC, Peters KG, Marchuk DA (1999) Allelic and locus heterogeneity in inherited venous malformations. Hum Mol Genet 8:1279–1289

    Article  CAS  PubMed  Google Scholar 

  9. Jones N, Iljin K, Dumont DJ, Alitalo K (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2:257–267

    Article  CAS  PubMed  Google Scholar 

  10. Master Z, Jones N, Tran J, Jones J, Kerbel RS, Dumont DJ (2001) Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak. EMBO J 20:5919–5928

    Article  CAS  PubMed  Google Scholar 

  11. Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, Vadas MA (2000) Angiopoietin-1 is an antipermeability and anti-Inflammatory agent in vitro and targets cell junctions. Circ Res 87:603–607

    CAS  PubMed  Google Scholar 

  12. Kim I, Kim HG, So J-S, Kim JH, Kwak HJ, Koh GY (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Circ Res 86:24–29

    CAS  PubMed  Google Scholar 

  13. Papapetropoulos A, García-Cardeña G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC (1999) Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79:213–223

    CAS  PubMed  Google Scholar 

  14. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  CAS  PubMed  Google Scholar 

  15. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  CAS  PubMed  Google Scholar 

  16. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  PubMed  Google Scholar 

  17. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJC, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272:31515–31524

    Article  CAS  PubMed  Google Scholar 

  18. Hughes DP, Marron MB, Brindle NPJ (2003) The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-κB inhibitor ABIN-2. Circ Res 92:630–636

    Article  CAS  PubMed  Google Scholar 

  19. White PJ, Kumari R, Porter KE, London NJ, Ng LL, Boarder MR (2000) Antiproliferative effect of UTP on human arterial and venous smooth muscle cells. Am J Physiol Heart Circ Physiol 279:H2735–H2742

    Google Scholar 

  20. Cotton JM, Thomas MR, Dunmore BJ, Salisbury J, Shah AM, Brindle NP (2002) Angiogenesis in chronically ischaemic human heart following percutaneous myocardial revascularisation. Heart 87:281–283

    Article  CAS  PubMed  Google Scholar 

  21. Tadros A, Hughes DP, Dunmore BJ, Brindle NPJ (2003) ABIN-2 protects endothelial cells from death and has a role in the antiapoptotic effect of angiopoietin-1. Blood 102:4407–4409

    Article  CAS  PubMed  Google Scholar 

  22. Marron MB, Hughes DP, Edge MD, Forder CL, Brindle NPJ (2000) Evidence for heterotypic interaction between the receptor tyrosine kinases TIE-1 and TIE-2. J Biol Chem 275:39741–39746

    Article  CAS  PubMed  Google Scholar 

  23. Matthews JA, Batki A, Hynds C, Kricka LJ (1985) Enhanced chemiluminescent method for the detection of DNA dot-hybridization assays. Anal Biochem 151:205–209

    CAS  PubMed  Google Scholar 

  24. Korpelainen EI, Kärkkäinen M, Gunji Y, Vikkula M, Alitalo K (1999) Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18:1–8

    Article  CAS  PubMed  Google Scholar 

  25. Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574

    CAS  PubMed  Google Scholar 

  26. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    CAS  PubMed  Google Scholar 

  27. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165

    CAS  PubMed  Google Scholar 

  28. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, Altieri DC, Sessa WC (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275:9102–9105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Wellcome Trust (058695) to P.N.M. and N.P.J.B., Wellcome Trust Biomedical Collaboration Grant (061303/Z/00/Z) to N.P.J.B., grants from the Birth Defects Foundation (00/04) and Paton Masser Memorial Fund of the British Association of Plastic Surgeons to P.N.M., and a grant from the National Institutes of Health (EY05318) to P.A.D. P.A.D. is a Jules and Doris Stein Research to Prevent Blindness Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas P. J. Brindle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, P.N., Dunmore, B.J., Tadros, A. et al. Functional analysis of a mutant form of the receptor tyrosine kinase Tie2 causing venous malformations. J Mol Med 83, 58–63 (2005). https://doi.org/10.1007/s00109-004-0601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0601-9

Keywords

Navigation