Skip to main content
Log in

Inhibition of caspase-mediated PARP-1 cleavage results in increased necrosis in isolated islets of Langerhans

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The current procedure for isolation of islet cells from the pancreas for transplantation by enzymatic digestion is accompanied by significant islet cell loss. Therapeutic strategies aimed at the inhibition of islet cell damage could be expected to increase islet yield and improve cell viability, thereby making more efficient use of available donor tissue. The aim of the present work was to examine the effects of caspase and PARP-1 inhibition on islet survival. We demonstrate that following isolation, islets become increasingly necrotic and display a PARP-1 cleavage pattern typical of necrotic cells, characterized by the appearance of a 50 kDa cleavage product. Caspase inhibition using Z-VAD-fmk resulted in increased necrosis in both human and canine islets by a nicotinamide-sensitive mechanism. Necrosis was also induced by DEVD-fmk, but not by YVAD-cmk, indicating that only inhibitors of caspase-3 were able to cause necrosis. Moreover, increased mitochondrial depolarization was observed in islets following 72 h in culture, which correlated with increased expression of Bax. Mitochondrial depolarization was also visible in islets treated with both Z-VAD-fmk and nicotinamide, indicating that mitochondrial dysfunction may account for the necrotic-like death observed in the absence of PARP-1 and caspase activity. Our results demonstrate that inhibition of PARP-1 cleavage results in increased levels of PARP-1-mediated necrotic cell death, highlighting the importance of PARP-1 cleavage in assuring the execution of the apoptotic program. Taken together, these findings reveal the interdependence of necrosis and apoptosis in isolated islets, suggesting therapeutic strategies which target early events in cell death signaling in order to prevent multiple forms of islet cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2
Fig. 3A, B
Fig. 4
Fig. 5A, B
Fig. 6A–D
Fig. 7A–C

Similar content being viewed by others

Abbreviations

DMSO :

Dimethyl sulfoxide

FBS :

Fetal bovine serum

FDA :

Fluorescein diacetate

IEQ :

Islet equivalent

IL-1β :

Interleukin 1-beta

INF-γ :

Interferon gamma

MTT :

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NG :

Newport green

PARP :

Poly (ADP-ribose) polymerase

PI :

Propidium iodide

TNF-α :

Tumor necrosis factor alpha

References

  1. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    CAS  PubMed  Google Scholar 

  2. London NJ, Swift SM, Clayton HA (1998) Isolation, culture and functional evaluation of islets of Langerhans. Diabetes Metab 24:200–207

    Google Scholar 

  3. Morrison CP, Wemyss-Holden SA, Dennison AR, Maddern GJ (2002) Islet yield remains a problem in islet autotransplantation. Arch Surg 137:80–83

    Article  PubMed  Google Scholar 

  4. Ryan EA, Lakey JR, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabinovitch A, Elliott JF, Bigam D, Kneteman NM, Warnock GL, Larsen I, Shapiro AM (2001) Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50:710–719

    PubMed  Google Scholar 

  5. Ilieva A, Yuan S, Wang RN, Agapitos D, Hill DJ, Rosenberg L (1999) Pancreatic islet cell survival following islet isolation: the role of cellular interactions in the pancreas. J Endocrinol 161:357–364

    CAS  PubMed  Google Scholar 

  6. Wang RN, Rosenberg L (1999) Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol 163:181–190

    PubMed  Google Scholar 

  7. Rosenberg L, Wang R, Paraskevas S, Maysinger D (1999) Structural and functional changes resulting from islet isolation lead to islet cell death. Surgery 126:393–398

    PubMed  Google Scholar 

  8. Paraskevas S, Maysinger D, Wang R, Duguid TP, Rosenberg L (2000) Cell loss in isolated human islets occurs by apoptosis. Pancreas 20:270–276

    Article  CAS  PubMed  Google Scholar 

  9. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  10. Ha HC, Snyder SH (1999) Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96:13978–13982

    CAS  PubMed  Google Scholar 

  11. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    CAS  PubMed  Google Scholar 

  12. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–14

    CAS  PubMed  Google Scholar 

  13. Ricordi C, Lacy PE, Scharp DW (1989) Automated islet isolation from human pancreas. Diabetes 38 [Suppl 1]:140–142

    Google Scholar 

  14. Lukowiak B, Vandewalle B, Riachy R, Kerr-Conte J, Gmyr V, Belaich S, Lefebvre J, Pattou F (2001) Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe. J Histochem Cytochem 49:519–528

    PubMed  Google Scholar 

  15. Shah GM, Shah RG, Poirier GG (1996) Different cleavage pattern for poly (ADP-ribose) polymerase during necrosis and apoptosis in HL-60 cells. Biochem Biophys Res Commun 229:838–844

    Article  CAS  PubMed  Google Scholar 

  16. Gobeil S, Boucher CC, Nadeau D, Poirier GG (2001) Characterization of the necrotic cleavage of poly (ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ 8:588–594

    Article  CAS  PubMed  Google Scholar 

  17. Saldeen J (2000) Cytokines induce both necrosis and apoptosis via a common Bcl-2- inhibitable pathway in rat insulin-producing cells. Endocrinology 141:2003–2010

    CAS  PubMed  Google Scholar 

  18. Hoorens A, Stange G, Pavlovic D, Pipeleers D (2001) Distinction between interleukin-1-induced necrosis and apoptosis of islet cells. Diabetes 50:551–557

    Google Scholar 

  19. Xiang J, Chao DT, Korsmeyer SJ (1996) BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci USA 93:14559–14563

    Article  CAS  PubMed  Google Scholar 

  20. Thomas D, Yang H, Boffa DJ, Ding R, Sharma VK, Lagman M, Li B, Hering B, Mohanakumar T, Lakey J, Kapur S, Hancock WW, Suthanthiran M (2002) Proapoptotic Bax is hyperexpressed in isolated human islets compared with antiapoptotic Bcl-2. Transplantation 74:1489–1496

    Article  CAS  PubMed  Google Scholar 

  21. Aikin R, Rosenberg L, Maysinger D (2000) Phosphatidylinositol 3-kinase signaling to Akt mediates survival in isolated canine islets of Langerhans. Biochem Biophys Res Commun 277:455–461

    Article  CAS  PubMed  Google Scholar 

  22. Contreras JL, Smyth CA, Bilbao G, Young CJ, Thompson JA, Eckhoff DE (2002) Simvastatin induces activation of the serine-threonine protein kinase AKT and increases survival of isolated human pancreatic islets. Transplantation 74:1063–1069

    Article  CAS  PubMed  Google Scholar 

  23. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    CAS  PubMed  Google Scholar 

  24. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    Article  CAS  PubMed  Google Scholar 

  25. Carlsson PO, Kozlova I, Andersson A, Roomans GM (2003) Changes in intracellular sodium, potassium, and calcium concentrations in transplanted mouse pancreatic islets. Transplantation 75:445–449

    Article  CAS  PubMed  Google Scholar 

  26. Carlsson PO, Palm F, Andersson A, Liss P (2001) Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes 50:489–495

    PubMed  Google Scholar 

  27. Moritz W, Meier F, Stroka DM, Giuliani M, Kugelmeier P, Nett PC, Lehmann R, Candinas D, Gassmann M, Weber M (2002) Apoptosis in hypoxic human pancreatic islets correlates with HIF-1alpha expression. FASEB J 16:745–747

    CAS  PubMed  Google Scholar 

  28. Smith S (2001) The world according to PARP. Trends Biochem Sci 26:174–179

    Article  CAS  PubMed  Google Scholar 

  29. Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T, Jishage K, Watanabe T, Sugimoto T, Nakagama H, Ochiya T, Sugimura T (1999) Poly (ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:2301–2304

    Article  CAS  PubMed  Google Scholar 

  30. Burkart V, Blaeser K, Kolb H (1999) Potent beta-cell protection in vitro by an isoquinolinone-derived PARP inhibitor. Horm Metab Res 31:641–644

    CAS  PubMed  Google Scholar 

  31. Wurzer G, Herceg Z, Wesierska-Gadek J (2000) Increased resistance to anticancer therapy of mouse cells lacking the poly (ADP-ribose) polymerase attributable to up-regulation of the multidrug resistance gene product P-glycoprotein. Cancer Res 60:4238–4244

    CAS  PubMed  Google Scholar 

  32. Chiarugi A (2002) Poly (ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol Sci 23:122–129

    Article  CAS  PubMed  Google Scholar 

  33. Halappanavar SS, Rhun YL, Mounir S, Martins LM, Huot J, Earnshaw WC, Shah GM (1999) Survival and proliferation of cells expressing caspase-uncleavable Poly (ADP-ribose) polymerase in response to death-inducing DNA damage by an alkylating agent. J Biol Chem 274:37097–37104

    Article  CAS  PubMed  Google Scholar 

  34. Casiano CA, Ochs RL, Tan EM (1998) Distinct cleavage products of nuclear proteins in apoptosis and necrosis revealed by autoantibody probes. Cell Death Differ 5:183–190

    Article  CAS  PubMed  Google Scholar 

  35. Froelich CJ, Hanna WL, Poirier GG, Duriez PJ, D’Amours D, Salvesen GS, Alnemri ES, Earnshaw WC, Shah GM (1996) Granzyme B/perforin-mediated apoptosis of Jurkat cells results in cleavage of poly (ADP-ribose) polymerase to the 89-kDa apoptotic fragment and less abundant 64-kDa fragment. Biochem Biophys Res Commun 227:658–665

    Article  CAS  PubMed  Google Scholar 

  36. McGinnis KM, Gnegy ME, Park YH, Mukerjee N, Wang KK (1999) Procaspase-3 and poly (ADP)ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun 263:94–99

    Article  CAS  PubMed  Google Scholar 

  37. Wood DE, Newcomb EW (1999) Caspase-dependent activation of calpain during drug-induced apoptosis. J Biol Chem 274:8309–8315

    Article  CAS  PubMed  Google Scholar 

  38. Lemaire C, Andreau K, Souvannavong V, Adam A (1998) Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett 425:266–270

    CAS  PubMed  Google Scholar 

  39. Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, Herceg Z, Wang ZQ, Schulze-Osthoff K (2002) Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 13:978–988

    Article  CAS  PubMed  Google Scholar 

  40. Tafani M, Schneider TG, Pastorino JG, Farber JL (2000) Cytochrome c-dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition. Am J Pathol 156:2111–2121

    CAS  PubMed  Google Scholar 

  41. Chang LK, Johnson EM Jr (2002) Cyclosporin A inhibits caspase-independent death of NGF-deprived sympathetic neurons: a potential role for mitochondrial permeability transition. J Cell Biol 157:771–781

    Article  CAS  PubMed  Google Scholar 

  42. Hirsch T, Marchetti P, Susin SA, Dallaporta B, Zamzami N, Marzo I, Geuskens M, Kroemer G (1997) The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 15:1573–1581

    CAS  PubMed  Google Scholar 

  43. Ris F, Hammar E, Bosco D, Pilloud C, Maedler K, Donath MY, Oberholzer J, Zeender E, Morel P, Rouiller D, Halban PA (2002) Impact of integrin-matrix matching and inhibition of apoptosis on the survival of purified human beta-cells in vitro. Diabetologia 45:841–850

    Google Scholar 

  44. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    CAS  PubMed  Google Scholar 

  45. Virag L, Szabo C (2001) Purines inhibit poly (ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J 15:99–107

    PubMed  Google Scholar 

  46. Tentori L, Balduzzi A, Portarena I, Levati L, Vernole P, Gold B, Bonmassar E, Graziani G (2001) Poly (ADP-ribose) polymerase inhibitor increases apoptosis and reduces necrosis induced by a DNA minor groove binding methyl sulfonate ester. Cell Death Differ 8:817–828

    CAS  PubMed  Google Scholar 

  47. Rosenthal DS, Simbulan-Rosenthal CM, Liu WF, Velena A, Anderson D, Benton B, Wang ZQ, Smith W, Ray R, Smulson ME (2001) PARP determines the mode of cell death in skin fibroblasts, but not keratinocytes, exposed to sulfur mustard. J Invest Dermatol 117:1566–1573

    Article  CAS  PubMed  Google Scholar 

  48. Filipovic DM, Meng X, Reeves WB (1999) Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells. Am J Physiol 277:F428–F436

    CAS  PubMed  Google Scholar 

  49. Moroni F, Meli E, Peruginelli F, Chiarugi A, Cozzi A, Picca R, Romagnoli P, Pellicciari R, Pellegrini-Giampietro DE (2001) Poly (ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ 8:921–932

    Article  CAS  PubMed  Google Scholar 

  50. Hoorens A, Pipeleers D (1999) Nicotinamide protects human beta cells against chemically-induced necrosis, but not against cytokine-induced apoptosis. Diabetologia 42:55–59

    Google Scholar 

  51. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly (ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Juvenile Diabetes Research Foundation, the Canadian Institutes for Health Research, and the Canadian Diabetes Association. L. Rosenberg is a National Scientist supported by the Fonds du Recherches Scientifique du Quebec. The authors would like to thank Despina Agapitos, Mark Lipsett, and Ali Hazrati for technical assistance with the islet isolation procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusica Maysinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aikin, R., Rosenberg, L., Paraskevas, S. et al. Inhibition of caspase-mediated PARP-1 cleavage results in increased necrosis in isolated islets of Langerhans. J Mol Med 82, 389–397 (2004). https://doi.org/10.1007/s00109-004-0540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0540-5

Keywords

Navigation