Skip to main content

Advertisement

Log in

Astrocytes protect the CNS: antigen-specific T helper cell responses are inhibited by astrocyte-induced upregulation of CTLA-4 (CD152)

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Astrocytes are the first cells that are encountered by T cells invading the central nervous system (CNS) by crossing the blood-brain barrier. We show that primary astrocytes contribute to the immune privilege of the CNS by suppressing Th1 and Th2 cell activation, proliferation and effector function. Moreover, this astrocyte-mediated inhibition of Th effector cells was effective on already activated, proliferating cells. Transforming growth factor (TGF)-β secreted by astrocytes or T cells was not the major factor in the inhibition. The inhibition of T-cell proliferation induced by astrocytes was mainly mediated by upregulation of CTLA-4 on already activated T cells, which occurred both with and without cell-cell contact. Upregulation of the inhibitory molecule CTLA-4 on autoreactive Th cells, as mediated by astrocytes, thus represents a novel mechanism for securing the immune privilege of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3a, b
Fig. 4
Fig. 5a–c
Fig. 6

Similar content being viewed by others

References

  1. Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  2. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285

    Article  CAS  PubMed  Google Scholar 

  3. Villoslada P, Hauser SL, Bartke I, Unger J, Heald N, Rosenberg D, Cheung SW, Mobley WC, Fisher S, Genain CP (2000) Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 191:1799–1806

    Article  CAS  PubMed  Google Scholar 

  4. Flügel A, Matsumuro K, Neumann H, Klinkert WE, Birnbacher R, Lassmann H, Otten U, Wekerle H (2001) Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol 31:11–22

    Article  PubMed  Google Scholar 

  5. Tuszynski MH (2000) Intraparenchymal NGF infusions rescue degenerating cholinergic neurons. Cell Transplant 9:629–636

    CAS  PubMed  Google Scholar 

  6. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232

    CAS  PubMed  Google Scholar 

  7. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    CAS  PubMed  Google Scholar 

  8. Aloisi F, Ria F, Adorini L (2000) Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 21:141–147

    CAS  PubMed  Google Scholar 

  9. Soos JM, Morrow J, Ashley TA, Szente BE, Bikoff EK, Zamvil SS (1998) Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigens for presentation to encephalitogenic T cells. J Immunol 161:5959–5966

    CAS  PubMed  Google Scholar 

  10. Tan L, Gordon KB, Mueller JP, Matis LA, Miller SD (1998) Presentation of proteolipid protein epitopes and B7–1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol 160:4271–4279

    CAS  PubMed  Google Scholar 

  11. Aloisi F, Ria F, Penna G, Adorini L (1998) Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol 160:4671–4680

    CAS  PubMed  Google Scholar 

  12. Aloisi F, Penna G, Cerase J, Menendez Iglesias B, Adorini L (1997) IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 159:1604–1612

    CAS  PubMed  Google Scholar 

  13. Aloisi F, Penna G, Polazzi E, Minghetti L, Adorini L (1999) CD40-CD154 interaction and IFN-gamma are required for IL-12 but not prostaglandin E2 secretion by microglia during antigen presentation to Th1 cells. J Immunol 162:1384–1391

    CAS  PubMed  Google Scholar 

  14. O’Banion MK, Miller JC, Chang JW, Kaplan MD, Coleman PD (1996) Interleukin-1 beta induces prostaglandin G/H synthase-2 (cyclooxygenase-2) in primary murine astrocyte cultures. J Neurochem 66:2532–2540

    CAS  PubMed  Google Scholar 

  15. Palma C, Minghetti L, Astolfi M, Ambrosini E, Silberstein FC, Manzini S, Levi G, Aloisi F (1997) Functional characterization of substance P receptors on cultured human spinal cord astrocytes: synergism of substance P with cytokines in inducing interleukin-6 and prostaglandin E2 production. Glia 21:183–193

    Article  CAS  PubMed  Google Scholar 

  16. Meinl E, Aloisi F, Ertl B, Weber F, de Waal MR, Wekerle H, Hohlfeld R (1994) Multiple sclerosis. Immunomodulatory effects of human astrocytes on T cells. Brain 117: 1323–1332

    PubMed  Google Scholar 

  17. Weber F, Meinl E, Aloisi F, Nevinny-Stickel C, Albert E, Wekerle H, Hohlfeld R (1994) Human astrocytes are only partially competent antigen presenting cells. Possible implications for lesion development in multiple sclerosis. Brain 117: 59–69

    PubMed  Google Scholar 

  18. Chambers CA, Krummel MF, Boitel B, Hurwitz A, Sullivan TJ, Fournier S, Cassell D, Brunner M, Allison JP (1996) The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol Rev 153:27–46

    CAS  PubMed  Google Scholar 

  19. Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618

    Article  CAS  PubMed  Google Scholar 

  20. Brunner MC, Chambers CA, Chan FK, Hanke J, Winoto A, Allison JP (1999) CTLA-4-mediated inhibition of early events of T cell proliferation. J Immunol 162:5813–5820

    CAS  PubMed  Google Scholar 

  21. Maszyna F, Hoff H, Kunkel D, Radbruch A, Brunner-Weinzierl MC (2003) Diversity of clonal T cell proliferation is mediated by differential expression of CD152 (CTLA-4) on the cell surface of activated individual T lymphocytes. J Immunol 171:3459–3466

    CAS  PubMed  Google Scholar 

  22. Martin M, Schneider H, Azouz A, Rudd CE (2001) Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J Exp Med 194:1675–1681

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Jin W, Wahl SM (1998) Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T cells. J Exp Med 188:1849–1857

    Article  CAS  PubMed  Google Scholar 

  24. Sullivan TJ, Letterio JJ, van Elsas A, Mamura M, van Amelsfort J, Sharpe S, Metzler B, Chambers CA, Allison JP (2001) Lack of a role for transforming growth factor-beta in cytotoxic T lymphocyte antigen-4-mediated inhibition of T cell activation. Proc Natl Acad Sci USA 98:2587–2592

    Article  CAS  PubMed  Google Scholar 

  25. Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA (1996) CTLA-4: a negative regulator of autoimmune disease. J Exp Med 184:783–788

    CAS  PubMed  Google Scholar 

  26. Hurwitz AA, Sullivan TJ, Sobel RA, Allison JP (2002) Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc Natl Acad Sci USA 99:3013–3017

    Article  CAS  PubMed  Google Scholar 

  27. Oliveira EM, Bar-Or A, Waliszewska AI, Cai G, Anderson DE, Krieger JI, Hafler DA (2003) CTLA-4 dysregulation in the activation of myelin basic protein reactive T cells may distinguish patients with multiple sclerosis from healthy controls. J Autoimmun 20:71–81

    Article  CAS  PubMed  Google Scholar 

  28. Kantarci OH, Hebrink DD, Achenbach SJ, Atkinson EJ, Waliszewska A, Buckle G, McMurray CT, de Andrade M, Hafler DA, Weinshenker BG (2003) CTLA4 is associated with susceptibility to multiple sclerosis. J Neuroimmunol 134:133–141

    Article  CAS  PubMed  Google Scholar 

  29. Mäurer M, Ponath A, Kruse N, Rieckmann P (2002) CTLA4 exon 1 dimorphism is associated with primary progressive multiple sclerosis. J Neuroimmunol 131:213–215

    Article  PubMed  Google Scholar 

  30. Masterman T, Ligers A, Zhang Z, Hellgren D, Salter H, Anvret M, Hillert J (2002) CTLA4 dimorphisms and the multiple sclerosis phenotype. J Neuroimmunol 131:208–212

    Article  CAS  PubMed  Google Scholar 

  31. Andreevskii TV, Sudomoina MA, Gusev EI, Boiko AN, Alekseenkov AD, Favorova OO (2002) Polymorphism A/G in position +49 of CTLA4 exon 1 in multiple sclerosis in Russians. Mol Biol (Mosk) 36:643–648

    Google Scholar 

  32. Ligers A, Teleshova N, Masterman T, Huang WX, Hillert J (2001) CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms. Genes Immun 2:145–152

    CAS  PubMed  Google Scholar 

  33. Rasmussen HB, Kelly MA, Francis DA, Clausen J (2001) CTLA4 in multiple sclerosis. Lack of genetic association in a European Caucasian population but evidence of interaction with HLA-DR2 among Shanghai Chinese. J Neurol Sci 184:143–147

    Article  CAS  PubMed  Google Scholar 

  34. Liu GY, Fairchild PJ, Smith RM, Prowle JR, Kioussis D, Wraith DC (1995) Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3:407–415

    CAS  PubMed  Google Scholar 

  35. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565

    CAS  PubMed  Google Scholar 

  36. Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171:131–137

    CAS  PubMed  Google Scholar 

  37. Alegre ML, Shiels H, Thompson CB, Gajewski TF (1998) Expression and function of CTLA-4 in Th1 and Th2 cells. J Immunol 161:3347–3356

    CAS  PubMed  Google Scholar 

  38. Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9:271–277

    Article  Google Scholar 

  39. Bechmann I, Lossau S, Steiner B, Mor G, Gimsa U, Nitsch R (2000) Reactive astrocytes upregulate Fas (CD95) and Fas ligand (CD95L) expression but do not undergo programmed cell death during the course of anterograde degeneration. Glia 32:25–41

    Article  CAS  PubMed  Google Scholar 

  40. Bechmann I, Steiner B, Gimsa U, Mor G, Wolf S, Beyer M, Nitsch R, Zipp F (2002) Astrocyte-induced T cell elimination is CD95 ligand dependent. J Neuroimmunol 132:60–65

    Article  CAS  PubMed  Google Scholar 

  41. Aloisi F, Ria F, Columba CS, Hess H, Penna G, Adorini L (1999) Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. Eur J Immunol 29:2705–2714

    Article  CAS  PubMed  Google Scholar 

  42. Nikcevich KM, Gordon KB, Tan L, Hurst SD, Kroepfl JF, Gardinier M, Barrett TA, Miller SD (1997) IFN-gamma-activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. J Immunol 158:614–621

    CAS  PubMed  Google Scholar 

  43. Sun D, Coleclough C, Whitaker JN (1997) Nonactivated astrocytes downregulate T cell receptor expression and reduce antigen-specific proliferation and cytokine production of myelin basic protein (MBP)-reactive T cells. J Neuroimmunol 78:69–78

    Article  CAS  PubMed  Google Scholar 

  44. Xiao BG, Diab A, Zhu J, van der Meide P, Link H (1998) Astrocytes induce hyporesponses of myelin basic protein-reactive T and B cell function. J Neuroimmunol 89:113–121

    Article  CAS  PubMed  Google Scholar 

  45. Ohmori K, Hong Y, Fujiwara M, Matsumoto Y (1992) In situ demonstration of proliferating cells in the rat central nervous system during experimental autoimmune encephalomyelitis. Evidence suggesting that most infiltrating T cells do not proliferate in the target organ. Lab Invest 66:54–62

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank David C. Wraith, University of Bristol, for providing MBP-TCR transgenic mice. We are most grateful to N. Avrion Mitchison, University College London, for critical reading of the manuscript and fruitful discussions. The authors thank Jan Gimsa, University of Rostock, and Asle Sudbø, Norwegian University of Science and Technology, for discussion of the manuscript. Arndt Rolfs, University of Rostock, and Gerd.-R. Burmester, Charité University Hospital (Berlin), are acknowledged for their generous support and helpful discussion. This work was supported by the Gemeinnützige Hertie-Stiftung (1.319.110-01-04 and 191/00/15), the Bundesministerium für Bildung und Forschung (01 ZZ 0108), and the Deutsche Forschungsgemeinschaft SFB 507/B11 and BR 1860/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Gimsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimsa, U., Øren, A., Pandiyan, P. et al. Astrocytes protect the CNS: antigen-specific T helper cell responses are inhibited by astrocyte-induced upregulation of CTLA-4 (CD152). J Mol Med 82, 364–372 (2004). https://doi.org/10.1007/s00109-004-0531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0531-6

Keywords

Navigation