Skip to main content

Advertisement

Log in

A novel transfecting peptide comprising a tetrameric nuclear localization sequence

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The transport of exogenous DNA into the nucleus of eukaryotic cells is a prerequisite for successful gene delivery. To favor nuclear transport we synthesized a tetramer of the nuclear localization signal (NLS) of the SV40 large T-antigen as a novel nonviral gene delivery vector. This 4.4-kDa lysine-rich peptide (NLSV404) binds and compacts DNA by electrostatic interaction and forms stable polyplexes. Apart from its sequence-specific potency to mediate nuclear accumulation of conjugated albumin, NLSV404 also displays properties of nuclear transport for plasmid DNA as confirmed by fluorescence in situ hybridization. Further, NLSV404 polyplexes are shown to efficiently transfect various cell lines such as 16HBE14o–, HeLa S6, and Cos7 cells. NLSV404 polyplexes displayed at least 20-fold higher transfection rates than analogous polyplexes formed by the nuclear transport-deficient mutant sequence cNLS. Using growth-arrested cells, NLSV404 complexes were at least 100-fold more efficient than cNLS complexes. Combination of NLSV404 peptide but not of cNLS peptide with preformed polyethylenimine and dendrimer DNA complexes resulted in a strong increase in transfection efficiency. Incubation of cells prior to transfection with NLSV404 polyplexes with excess free peptide NLSV404 but not with cNLS resulted in a dose-dependent dramatic decrease in the transfection rate, suggesting a sequence-specific competitive inhibition. These results indicate that NLSV404 mediates nuclear accumulation of transfected plasmid DNA and that it can be a highly useful component of nonviral gene vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Abbreviations

BSA-BODIPY :

Fluorescence-labeled bovine serum albumin

EGFP :

Enhanced green fluorescent protein

FISH :

Fluorescent in situ hybridization

NLS :

Nuclear localization signal

PEI :

Polyethylenimine

SV40 :

Simian virus 40

References

  1. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007

    CAS  PubMed  Google Scholar 

  2. Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273:7507–7511

    Article  CAS  PubMed  Google Scholar 

  3. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E (2000) Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 7:401–407

    Article  CAS  PubMed  Google Scholar 

  4. Brunner S, Furtbauer E, Sauer T, Kursa M, Wagner E (2002) Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther 5:80–86

    Article  CAS  PubMed  Google Scholar 

  5. Gorlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271:1513–1518

    PubMed  Google Scholar 

  6. Nigg EA (1997) Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386:779–787

    Article  CAS  PubMed  Google Scholar 

  7. Jans DA, Hubner S (1996) Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev 76:651–685

    CAS  PubMed  Google Scholar 

  8. Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39:499–509

    PubMed  Google Scholar 

  9. Goldfarb DS, Gariepy J, Schoolnik G, Kornberg RD (1986) Synthetic peptides as nuclear localization signals. Nature 322:641–644

    CAS  PubMed  Google Scholar 

  10. Richardson WD, Roberts BL, Smith AE (1986) Nuclear location signals in polyoma virus large-T. Cell 44:77–85

    CAS  PubMed  Google Scholar 

  11. Ciolina C, Byk G, Blanche F, Thuillier V, Scherman D, Wils P (1999) Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin alpha. Bioconjug Chem 10:49–55

    Article  CAS  PubMed  Google Scholar 

  12. Sebestyen MG, Ludtke JJ, Bassik MC et al (1998) DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol 16:80–85

    CAS  PubMed  Google Scholar 

  13. Zanta MA, Belguise-Valladier P, Behr JP (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 96:91–96

    CAS  PubMed  Google Scholar 

  14. Kalderon D, Richardson WD, Markham AF, Smith AE (1984) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311:33–38

    CAS  PubMed  Google Scholar 

  15. Schermelleh L, Solovei I, Zink D, Cremer T (2001) Two-color fluorescence labeling of early and mid-to-late replicating chromatin in living cells. Chromosome Res 9:77–80

    CAS  PubMed  Google Scholar 

  16. Ernst N, Ulrichskotter S, Schmalix WA et al (1999) Interaction of liposomal and polycationic transfection complexes with pulmonary surfactant. J Gene Med 1:331–340

    Article  CAS  PubMed  Google Scholar 

  17. Collas P, Alestrom P (1998) Nuclear localization signals enhance germline transmission of a transgene in zebrafish. Transgenic Res 7:303–309

    Article  CAS  PubMed  Google Scholar 

  18. Plank C, Tang MX, Wolfe AR, Szoka FCJ (1999) Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum Gene Ther 10:319–332

    Article  CAS  PubMed  Google Scholar 

  19. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 269:12918–12924

    CAS  PubMed  Google Scholar 

  20. Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    Google Scholar 

  21. Clamme JP, Azoulay J, Mely Y (2003) Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys J 84:1960–1968

    CAS  PubMed  Google Scholar 

  22. Radler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Förderverein für mukoviszidosekranke Kinder und Jugendliche der Region Ulm e.V. for financial support to purchase a fluorescence microscope. This work was supported by grants from the Bundesministerium für Bildung und Forschung, Bonn, Germany (01 GE9617/9, 01 GE0002, and 01 KV9554/1) and by the Deutsche Forschungsgemeinschaft (RO994/2–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Rosenecker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, W., Plank, C., Lausier, J. et al. A novel transfecting peptide comprising a tetrameric nuclear localization sequence. J Mol Med 81, 708–717 (2003). https://doi.org/10.1007/s00109-003-0483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0483-2

Keywords

Navigation